Cargando…

In Situ Atomic‐Scale Investigation of Structural Evolution During Sodiation/Desodiation Processes in Na(3)V(2)(PO(4))(3)‐Based All‐Solid‐State Sodium Batteries (Adv. Sci. 32/2023)

Dynamic Evolution In article number 2301490, Wen‐Wei Wu and co‐workers successfully investigate the structural evolution during sodiation/desodiation processes in Na(3)V(2)(PO(4))(3)‐based all‐solid‐state sodium batteries by in situ TEM. The intermediate Na(2)V(2)(PO(4))(3) phase with the P2(1)/c sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Fang‐Chun, Ma, Qianli, Tietz, Frank, Kao, Jui‐Cheng, Huang, Chi‐Ting, Hernandha, Rahmandhika Firdauzha Hary, Huang, Chun‐Wei, Lo, Yu‐Chieh, Chang, Jeng‐Kuei, Wu, Wen‐Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646217/
http://dx.doi.org/10.1002/advs.202370219
Descripción
Sumario:Dynamic Evolution In article number 2301490, Wen‐Wei Wu and co‐workers successfully investigate the structural evolution during sodiation/desodiation processes in Na(3)V(2)(PO(4))(3)‐based all‐solid‐state sodium batteries by in situ TEM. The intermediate Na(2)V(2)(PO(4))(3) phase with the P2(1)/c space group reduce the lattice mismatch between Na(3)V(2)(PO(4))(3) and NaV(2)(PO(4))(3), preventing structural collapse. Based on the density functional theory calculation, the Na(+) ion migrates more rapidly in the Na(2)V(2)(PO(4))(3) structure, which facilitates the desodiation and sodiation processes. The observation of dynamic evolution of the Na(3)V(2)(PO(4))(3) structure paves the way for an in‐depth understanding of electrode materials for energy‐storage applications. [Image: see text]