Cargando…

Genetically Engineered Cellular Nanovesicle as Targeted DNase I Delivery System for the Clearance of Neutrophil Extracellular Traps in Acute Lung Injury

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are prevalent critical illnesses with a high mortality rate among patients in intensive care units. Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of ALI/ARDS and represent a promising therapeutic target. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Yang, Chen, Yining, Li, Fangyuan, Mao, Zhengwei, Ding, Yuan, Wang, Weilin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646266/
https://www.ncbi.nlm.nih.gov/pubmed/37759381
http://dx.doi.org/10.1002/advs.202303053
Descripción
Sumario:Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are prevalent critical illnesses with a high mortality rate among patients in intensive care units. Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of ALI/ARDS and represent a promising therapeutic target. However, the clinical application of deoxyribonuclease I (DNase I), the only drug currently available to clear NETs, is limited due to the lack of precise and efficient delivery strategies. Therefore, targeted delivery of DNase I to the inflamed lung remains a critical issue to be addressed. Herein, a novel biomimetic DNase I delivery system is developed (DCNV) that employs genetically and bioorthogonally engineered cellular nanovesicles for pulmonary NETs clearance. The CXC motif chemokine receptor 2 overexpressed cellular nanovesicles can mimic the inflammatory chemotaxis of neutrophils in ALI/ARDS, leading to enhanced lung accumulation. Furthermore, DNase I immobilized through bioorthogonal chemistry exhibits remarkable enzymatic activity in NETs degradation, thus restraining inflammation and safeguarding lung tissue in the lipopolysaccharide‐induced ALI murine model. Collectively, the findings present a groundbreaking proof‐of‐concept in the utilization of biomimetic cellular nanovesicles to deliver DNase I for treating ALI/ARDS. This innovative strategy may usher in a new era in the development of pharmacological interventions for various inflammation‐related diseases.