Cargando…
Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide
The oxygen evolution reaction (OER) activity of transition metal (TM)‐based (oxy)hydroxide is dominated by the number and nature of surface active sites, which are generally considered to be TM atoms occupying less than half of surface sites, with most being inactive oxygen atoms. Herein, based on a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646268/ https://www.ncbi.nlm.nih.gov/pubmed/37814357 http://dx.doi.org/10.1002/advs.202303321 |
_version_ | 1785134859710103552 |
---|---|
author | Wang, Yu‐Han Li, Lei Shi, Jinghui Xie, Meng‐Yuan Nie, Jianhang Huang, Gui‐Fang Li, Bo Hu, Wangyu Pan, Anlian Huang, Wei‐Qing |
author_facet | Wang, Yu‐Han Li, Lei Shi, Jinghui Xie, Meng‐Yuan Nie, Jianhang Huang, Gui‐Fang Li, Bo Hu, Wangyu Pan, Anlian Huang, Wei‐Qing |
author_sort | Wang, Yu‐Han |
collection | PubMed |
description | The oxygen evolution reaction (OER) activity of transition metal (TM)‐based (oxy)hydroxide is dominated by the number and nature of surface active sites, which are generally considered to be TM atoms occupying less than half of surface sites, with most being inactive oxygen atoms. Herein, based on an in situ competing growth strategy of bimetallic ions and OH(−) ions, a facile one‐step method is proposed to modulate oxygen defects in NiFe‐layered double hydroxide (NiFe‐LDH)/FeOOH heterostructure, which may trigger the single lattice oxygen mechanism (sLOM). Interestingly, by only varying the addition of H(2)O(2), one can simultaneously regulate the concentration of oxygen defects, the valence of metal sites, and the ratio of components. The proper oxygen defects promote synergy between the adsorbate evolution mechanism (AEM, metal redox chemistry) and sLOM (oxygen redox chemistry) of OER in NiFe‐based (oxy)hydroxide, practically maximizing the use of surface TM and oxygen atoms as active sites. Consequently, the optimal NiFe‐LDH/FeOOH heterostructure outperforms the reported non‐noble OER catalysts in electrocatalytic activity, with an overpotential of 177 mV to deliver a current density of 20 mA cm(−2) and high stability. The novel strategy exemplifies a facile and versatile approach to designing highly active TM‐LDH‐based OER electrocatalysts for energy and environmental applications. |
format | Online Article Text |
id | pubmed-10646268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106462682023-10-09 Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide Wang, Yu‐Han Li, Lei Shi, Jinghui Xie, Meng‐Yuan Nie, Jianhang Huang, Gui‐Fang Li, Bo Hu, Wangyu Pan, Anlian Huang, Wei‐Qing Adv Sci (Weinh) Research Articles The oxygen evolution reaction (OER) activity of transition metal (TM)‐based (oxy)hydroxide is dominated by the number and nature of surface active sites, which are generally considered to be TM atoms occupying less than half of surface sites, with most being inactive oxygen atoms. Herein, based on an in situ competing growth strategy of bimetallic ions and OH(−) ions, a facile one‐step method is proposed to modulate oxygen defects in NiFe‐layered double hydroxide (NiFe‐LDH)/FeOOH heterostructure, which may trigger the single lattice oxygen mechanism (sLOM). Interestingly, by only varying the addition of H(2)O(2), one can simultaneously regulate the concentration of oxygen defects, the valence of metal sites, and the ratio of components. The proper oxygen defects promote synergy between the adsorbate evolution mechanism (AEM, metal redox chemistry) and sLOM (oxygen redox chemistry) of OER in NiFe‐based (oxy)hydroxide, practically maximizing the use of surface TM and oxygen atoms as active sites. Consequently, the optimal NiFe‐LDH/FeOOH heterostructure outperforms the reported non‐noble OER catalysts in electrocatalytic activity, with an overpotential of 177 mV to deliver a current density of 20 mA cm(−2) and high stability. The novel strategy exemplifies a facile and versatile approach to designing highly active TM‐LDH‐based OER electrocatalysts for energy and environmental applications. John Wiley and Sons Inc. 2023-10-09 /pmc/articles/PMC10646268/ /pubmed/37814357 http://dx.doi.org/10.1002/advs.202303321 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Wang, Yu‐Han Li, Lei Shi, Jinghui Xie, Meng‐Yuan Nie, Jianhang Huang, Gui‐Fang Li, Bo Hu, Wangyu Pan, Anlian Huang, Wei‐Qing Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide |
title | Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide |
title_full | Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide |
title_fullStr | Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide |
title_full_unstemmed | Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide |
title_short | Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal‐Based (oxy)Hydroxide |
title_sort | oxygen defect engineering promotes synergy between adsorbate evolution and single lattice oxygen mechanisms of oer in transition metal‐based (oxy)hydroxide |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646268/ https://www.ncbi.nlm.nih.gov/pubmed/37814357 http://dx.doi.org/10.1002/advs.202303321 |
work_keys_str_mv | AT wangyuhan oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT lilei oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT shijinghui oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT xiemengyuan oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT niejianhang oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT huangguifang oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT libo oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT huwangyu oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT pananlian oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide AT huangweiqing oxygendefectengineeringpromotessynergybetweenadsorbateevolutionandsinglelatticeoxygenmechanismsofoerintransitionmetalbasedoxyhydroxide |