Cargando…

The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation

The leading first‐in‐class ruthenium‐complex BOLD‐100 currently undergoes clinical phase‐II anticancer evaluation. Recently, BOLD‐100 is identified as anti‐Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD‐100‐resistant colon and p...

Descripción completa

Detalles Bibliográficos
Autores principales: Baier, Dina, Mendrina, Theresa, Schoenhacker‐Alte, Beatrix, Pirker, Christine, Mohr, Thomas, Rusz, Mate, Regner, Benedict, Schaier, Martin, Sgarioto, Nicolas, Raynal, Noël J.‐M., Nowikovsky, Karin, Schmidt, Wolfgang M., Heffeter, Petra, Meier‐Menches, Samuel M., Koellensperger, Gunda, Keppler, Bernhard K., Berger, Walter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646284/
https://www.ncbi.nlm.nih.gov/pubmed/37752764
http://dx.doi.org/10.1002/advs.202301939
_version_ 1785134863384313856
author Baier, Dina
Mendrina, Theresa
Schoenhacker‐Alte, Beatrix
Pirker, Christine
Mohr, Thomas
Rusz, Mate
Regner, Benedict
Schaier, Martin
Sgarioto, Nicolas
Raynal, Noël J.‐M.
Nowikovsky, Karin
Schmidt, Wolfgang M.
Heffeter, Petra
Meier‐Menches, Samuel M.
Koellensperger, Gunda
Keppler, Bernhard K.
Berger, Walter
author_facet Baier, Dina
Mendrina, Theresa
Schoenhacker‐Alte, Beatrix
Pirker, Christine
Mohr, Thomas
Rusz, Mate
Regner, Benedict
Schaier, Martin
Sgarioto, Nicolas
Raynal, Noël J.‐M.
Nowikovsky, Karin
Schmidt, Wolfgang M.
Heffeter, Petra
Meier‐Menches, Samuel M.
Koellensperger, Gunda
Keppler, Bernhard K.
Berger, Walter
author_sort Baier, Dina
collection PubMed
description The leading first‐in‐class ruthenium‐complex BOLD‐100 currently undergoes clinical phase‐II anticancer evaluation. Recently, BOLD‐100 is identified as anti‐Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD‐100‐resistant colon and pancreatic carcinoma cells. Acute BOLD‐100 treatment reduces lipid droplet contents of BOLD‐100‐sensitive but not ‐resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD‐100‐resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame‐shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl‐coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell‐free BOLD‐100‐CoA adduct formation suggesting acetyl‐CoA depletion as mechanism bridging BOLD‐100‐induced lipid metabolism alterations and histone acetylation‐mediated gene expression deregulation. Indeed, BOLD‐100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de‐acetylation as central mode‐of‐action of BOLD‐100 and metabolic programs stabilizing histone acetylation as relevant Achilles’ heel of acquired BOLD‐100‐resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD‐100 responsiveness. Summarizing, BOLD‐100 is identified as epigenetically active substance acting via targeting several onco‐metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD‐100 resistance opens novel strategies to tackle therapy failure.
format Online
Article
Text
id pubmed-10646284
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106462842023-09-26 The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation Baier, Dina Mendrina, Theresa Schoenhacker‐Alte, Beatrix Pirker, Christine Mohr, Thomas Rusz, Mate Regner, Benedict Schaier, Martin Sgarioto, Nicolas Raynal, Noël J.‐M. Nowikovsky, Karin Schmidt, Wolfgang M. Heffeter, Petra Meier‐Menches, Samuel M. Koellensperger, Gunda Keppler, Bernhard K. Berger, Walter Adv Sci (Weinh) Research Articles The leading first‐in‐class ruthenium‐complex BOLD‐100 currently undergoes clinical phase‐II anticancer evaluation. Recently, BOLD‐100 is identified as anti‐Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD‐100‐resistant colon and pancreatic carcinoma cells. Acute BOLD‐100 treatment reduces lipid droplet contents of BOLD‐100‐sensitive but not ‐resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD‐100‐resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame‐shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl‐coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell‐free BOLD‐100‐CoA adduct formation suggesting acetyl‐CoA depletion as mechanism bridging BOLD‐100‐induced lipid metabolism alterations and histone acetylation‐mediated gene expression deregulation. Indeed, BOLD‐100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de‐acetylation as central mode‐of‐action of BOLD‐100 and metabolic programs stabilizing histone acetylation as relevant Achilles’ heel of acquired BOLD‐100‐resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD‐100 responsiveness. Summarizing, BOLD‐100 is identified as epigenetically active substance acting via targeting several onco‐metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD‐100 resistance opens novel strategies to tackle therapy failure. John Wiley and Sons Inc. 2023-09-26 /pmc/articles/PMC10646284/ /pubmed/37752764 http://dx.doi.org/10.1002/advs.202301939 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Baier, Dina
Mendrina, Theresa
Schoenhacker‐Alte, Beatrix
Pirker, Christine
Mohr, Thomas
Rusz, Mate
Regner, Benedict
Schaier, Martin
Sgarioto, Nicolas
Raynal, Noël J.‐M.
Nowikovsky, Karin
Schmidt, Wolfgang M.
Heffeter, Petra
Meier‐Menches, Samuel M.
Koellensperger, Gunda
Keppler, Bernhard K.
Berger, Walter
The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation
title The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation
title_full The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation
title_fullStr The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation
title_full_unstemmed The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation
title_short The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation
title_sort lipid metabolism as target and modulator of bold‐100 anticancer activity: crosstalk with histone acetylation
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646284/
https://www.ncbi.nlm.nih.gov/pubmed/37752764
http://dx.doi.org/10.1002/advs.202301939
work_keys_str_mv AT baierdina thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT mendrinatheresa thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT schoenhackeraltebeatrix thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT pirkerchristine thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT mohrthomas thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT ruszmate thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT regnerbenedict thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT schaiermartin thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT sgariotonicolas thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT raynalnoeljm thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT nowikovskykarin thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT schmidtwolfgangm thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT heffeterpetra thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT meiermenchessamuelm thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT koellenspergergunda thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT kepplerbernhardk thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT bergerwalter thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT baierdina lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT mendrinatheresa lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT schoenhackeraltebeatrix lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT pirkerchristine lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT mohrthomas lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT ruszmate lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT regnerbenedict lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT schaiermartin lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT sgariotonicolas lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT raynalnoeljm lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT nowikovskykarin lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT schmidtwolfgangm lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT heffeterpetra lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT meiermenchessamuelm lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT koellenspergergunda lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT kepplerbernhardk lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation
AT bergerwalter lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation