Cargando…
The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation
The leading first‐in‐class ruthenium‐complex BOLD‐100 currently undergoes clinical phase‐II anticancer evaluation. Recently, BOLD‐100 is identified as anti‐Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD‐100‐resistant colon and p...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646284/ https://www.ncbi.nlm.nih.gov/pubmed/37752764 http://dx.doi.org/10.1002/advs.202301939 |
_version_ | 1785134863384313856 |
---|---|
author | Baier, Dina Mendrina, Theresa Schoenhacker‐Alte, Beatrix Pirker, Christine Mohr, Thomas Rusz, Mate Regner, Benedict Schaier, Martin Sgarioto, Nicolas Raynal, Noël J.‐M. Nowikovsky, Karin Schmidt, Wolfgang M. Heffeter, Petra Meier‐Menches, Samuel M. Koellensperger, Gunda Keppler, Bernhard K. Berger, Walter |
author_facet | Baier, Dina Mendrina, Theresa Schoenhacker‐Alte, Beatrix Pirker, Christine Mohr, Thomas Rusz, Mate Regner, Benedict Schaier, Martin Sgarioto, Nicolas Raynal, Noël J.‐M. Nowikovsky, Karin Schmidt, Wolfgang M. Heffeter, Petra Meier‐Menches, Samuel M. Koellensperger, Gunda Keppler, Bernhard K. Berger, Walter |
author_sort | Baier, Dina |
collection | PubMed |
description | The leading first‐in‐class ruthenium‐complex BOLD‐100 currently undergoes clinical phase‐II anticancer evaluation. Recently, BOLD‐100 is identified as anti‐Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD‐100‐resistant colon and pancreatic carcinoma cells. Acute BOLD‐100 treatment reduces lipid droplet contents of BOLD‐100‐sensitive but not ‐resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD‐100‐resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame‐shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl‐coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell‐free BOLD‐100‐CoA adduct formation suggesting acetyl‐CoA depletion as mechanism bridging BOLD‐100‐induced lipid metabolism alterations and histone acetylation‐mediated gene expression deregulation. Indeed, BOLD‐100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de‐acetylation as central mode‐of‐action of BOLD‐100 and metabolic programs stabilizing histone acetylation as relevant Achilles’ heel of acquired BOLD‐100‐resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD‐100 responsiveness. Summarizing, BOLD‐100 is identified as epigenetically active substance acting via targeting several onco‐metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD‐100 resistance opens novel strategies to tackle therapy failure. |
format | Online Article Text |
id | pubmed-10646284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106462842023-09-26 The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation Baier, Dina Mendrina, Theresa Schoenhacker‐Alte, Beatrix Pirker, Christine Mohr, Thomas Rusz, Mate Regner, Benedict Schaier, Martin Sgarioto, Nicolas Raynal, Noël J.‐M. Nowikovsky, Karin Schmidt, Wolfgang M. Heffeter, Petra Meier‐Menches, Samuel M. Koellensperger, Gunda Keppler, Bernhard K. Berger, Walter Adv Sci (Weinh) Research Articles The leading first‐in‐class ruthenium‐complex BOLD‐100 currently undergoes clinical phase‐II anticancer evaluation. Recently, BOLD‐100 is identified as anti‐Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD‐100‐resistant colon and pancreatic carcinoma cells. Acute BOLD‐100 treatment reduces lipid droplet contents of BOLD‐100‐sensitive but not ‐resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD‐100‐resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame‐shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl‐coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell‐free BOLD‐100‐CoA adduct formation suggesting acetyl‐CoA depletion as mechanism bridging BOLD‐100‐induced lipid metabolism alterations and histone acetylation‐mediated gene expression deregulation. Indeed, BOLD‐100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de‐acetylation as central mode‐of‐action of BOLD‐100 and metabolic programs stabilizing histone acetylation as relevant Achilles’ heel of acquired BOLD‐100‐resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD‐100 responsiveness. Summarizing, BOLD‐100 is identified as epigenetically active substance acting via targeting several onco‐metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD‐100 resistance opens novel strategies to tackle therapy failure. John Wiley and Sons Inc. 2023-09-26 /pmc/articles/PMC10646284/ /pubmed/37752764 http://dx.doi.org/10.1002/advs.202301939 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Baier, Dina Mendrina, Theresa Schoenhacker‐Alte, Beatrix Pirker, Christine Mohr, Thomas Rusz, Mate Regner, Benedict Schaier, Martin Sgarioto, Nicolas Raynal, Noël J.‐M. Nowikovsky, Karin Schmidt, Wolfgang M. Heffeter, Petra Meier‐Menches, Samuel M. Koellensperger, Gunda Keppler, Bernhard K. Berger, Walter The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation |
title | The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation |
title_full | The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation |
title_fullStr | The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation |
title_full_unstemmed | The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation |
title_short | The Lipid Metabolism as Target and Modulator of BOLD‐100 Anticancer Activity: Crosstalk with Histone Acetylation |
title_sort | lipid metabolism as target and modulator of bold‐100 anticancer activity: crosstalk with histone acetylation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646284/ https://www.ncbi.nlm.nih.gov/pubmed/37752764 http://dx.doi.org/10.1002/advs.202301939 |
work_keys_str_mv | AT baierdina thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT mendrinatheresa thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT schoenhackeraltebeatrix thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT pirkerchristine thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT mohrthomas thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT ruszmate thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT regnerbenedict thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT schaiermartin thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT sgariotonicolas thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT raynalnoeljm thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT nowikovskykarin thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT schmidtwolfgangm thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT heffeterpetra thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT meiermenchessamuelm thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT koellenspergergunda thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT kepplerbernhardk thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT bergerwalter thelipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT baierdina lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT mendrinatheresa lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT schoenhackeraltebeatrix lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT pirkerchristine lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT mohrthomas lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT ruszmate lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT regnerbenedict lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT schaiermartin lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT sgariotonicolas lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT raynalnoeljm lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT nowikovskykarin lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT schmidtwolfgangm lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT heffeterpetra lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT meiermenchessamuelm lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT koellenspergergunda lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT kepplerbernhardk lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation AT bergerwalter lipidmetabolismastargetandmodulatorofbold100anticanceractivitycrosstalkwithhistoneacetylation |