Cargando…
A modular, deep learning-based holistic intent sensing system tested with Parkinson’s disease patients and controls
People living with mobility-limiting conditions such as Parkinson’s disease can struggle to physically complete intended tasks. Intent-sensing technology can measure and even predict these intended tasks, such that assistive technology could help a user to safely complete them. In prior research, al...
Autores principales: | Russell, Joseph, Inches, Jemma, Carroll, Camille B., Bergmann, Jeroen H. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646321/ https://www.ncbi.nlm.nih.gov/pubmed/38020624 http://dx.doi.org/10.3389/fneur.2023.1260445 |
Ejemplares similares
-
Towards Dynamic Multi-Modal Intent Sensing Using Probabilistic Sensor Networks
por: Russell, Joseph, et al.
Publicado: (2022) -
Machine learning prediction of motor response after deep brain stimulation in Parkinson’s disease—proof of principle in a retrospective cohort
por: Habets, Jeroen G.V., et al.
Publicado: (2020) -
Impact of digital technologies on self-efficacy in people with Parkinson’s: a scoping review protocol
por: Hall, Andrew Michael, et al.
Publicado: (2023) -
Progressive Modular Rebalancing System and Visual Cueing for Gait Rehabilitation in Parkinson's Disease: A Pilot, Randomized, Controlled Trial With Crossover
por: Serrao, Mariano, et al.
Publicado: (2019) -
A Holistic Approach to a Dizzy Patient: A Practical Update
por: Koukoulithras, Ioannis, et al.
Publicado: (2022)