Cargando…
Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modelling
Predictions for physical systems often rely upon knowledge acquired from ensembles of entities, e.g. ensembles of cells in biological sciences. For qualitative and quantitative analysis, these ensembles are simulated with parametric families of mechanistic models (MMs). Two classes of methodologies,...
Autores principales: | Rumbell, Timothy, Parikh, Jaimit, Kozloski, James, Gurev, Viatcheslav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646445/ https://www.ncbi.nlm.nih.gov/pubmed/38026012 http://dx.doi.org/10.1098/rsos.230668 |
Ejemplares similares
-
Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action
por: Parikh, Jaimit, et al.
Publicado: (2021) -
Global Sensitivity Analysis of Ventricular Myocyte Model-Derived Metrics for Proarrhythmic Risk Assessment
por: Parikh, Jaimit, et al.
Publicado: (2019) -
Exploratory-Phase-Free Estimation of GP Hyperparameters in Sequential Design Methods—At the Example of Bayesian Inverse Problems
por: Sinsbeck, Michael, et al.
Publicado: (2020) -
Deep learning methods for inverse problems
por: Kamyab, Shima, et al.
Publicado: (2022) -
Model order reduction for left ventricular mechanics via congruency training
por: Di Achille, Paolo, et al.
Publicado: (2020)