Cargando…
Machine learning endometrial cancer risk prediction model: integrating guidelines of European Society for Medical Oncology with the tumor immune framework
OBJECTIVE: Current prognostic factors for endometrial cancer are not sufficient to predict recurrence in early stages. Treatment choices are based on the prognostic factors included in the risk classes defined by the ESMO-ESGO-ESTRO (European Society for Medical Oncology-European Society of Gynaecol...
Autores principales: | Bruno, Valentina, Betti, Martina, D’Ambrosio, Lorenzo, Massacci, Alice, Chiofalo, Benito, Pietropolli, Adalgisa, Piaggio, Giulia, Ciliberto, Gennaro, Nisticò, Paola, Pallocca, Matteo, Buda, Alessandro, Vizza, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646888/ https://www.ncbi.nlm.nih.gov/pubmed/37875322 http://dx.doi.org/10.1136/ijgc-2023-004671 |
Ejemplares similares
-
Towards reproducible research in recurrent pregnancy loss immunology: Learning from cancer microenvironment deconvolution
por: Betti, Martina, et al.
Publicado: (2023) -
Design of a companion bioinformatic tool to detect the emergence and geographical distribution of SARS-CoV-2 Spike protein genetic variants
por: Massacci, Alice, et al.
Publicado: (2020) -
Serum DNA integrity index as a potential molecular biomarker in endometrial cancer
por: Vizza, Enrico, et al.
Publicado: (2018) -
Correction to: Serum DNA integrity index as a potential molecular biomarker in endometrial cancer
por: Vizza, Enrico, et al.
Publicado: (2018) -
Endometrial Cancer Immune Escape Mechanisms: Let Us Learn From the Fetal–Maternal Interface
por: Bruno, Valentina, et al.
Publicado: (2020)