Cargando…
Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects
We introduce FENNIX (Force-Field-Enhanced Neural Network InteraXions), a hybrid approach between machine-learning and force-fields. We leverage state-of-the-art equivariant neural networks to predict local energy contributions and multiple atom-in-molecule properties that are then used as geometry-d...
Autores principales: | Plé, Thomas, Lagardère, Louis, Piquemal, Jean-Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646944/ https://www.ncbi.nlm.nih.gov/pubmed/38020379 http://dx.doi.org/10.1039/d3sc02581k |
Ejemplares similares
-
Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects
por: Jaffrelot Inizan, Théo, et al.
Publicado: (2023) -
Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings
por: Loco, Daniele, et al.
Publicado: (2019) -
Atomistic Polarizable Embeddings: Energy, Dynamics,
Spectroscopy, and Reactivity
por: Loco, Daniele, et al.
Publicado: (2021) -
General Model for Treating Short-Range Electrostatic
Penetration in a Molecular Mechanics Force Field
por: Wang, Qiantao, et al.
Publicado: (2015) -
Homogeneous Spaces and Equivariant Embeddings
por: Timashev, DA
Publicado: (2011)