Cargando…
Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things
INTRODUCTION: Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this...
Autores principales: | Akram, Arslan, Rashid, Javed, Jaffar, Muhammad Arfan, Faheem, Muhammad, Amin, Riaz ul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646956/ https://www.ncbi.nlm.nih.gov/pubmed/38009016 http://dx.doi.org/10.1111/srt.13524 |
Ejemplares similares
-
Entropy and Gaussian Filter-Based Adaptive Active Contour for Segmentation of Skin Lesions
por: Mustafa, Saleem, et al.
Publicado: (2022) -
Internet of Things and cloud computing
por: Singh, Nishant, et al.
Publicado: (2021) -
Precision in Dermatology: Developing an Optimal Feature Selection Framework for Skin Lesion Classification
por: Akram, Tallha, et al.
Publicado: (2023) -
Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization
por: Khan, Muhammad Attique, et al.
Publicado: (2021) -
A Hybrid Preprocessor DE-ABC for Efficient Skin-Lesion Segmentation with Improved Contrast
por: Malik, Shairyar, et al.
Publicado: (2022)