Cargando…
A breath of sunshine: oxygenic photosynthesis by functional molecular architectures
The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the redu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646967/ https://www.ncbi.nlm.nih.gov/pubmed/38020375 http://dx.doi.org/10.1039/d3sc03780k |
_version_ | 1785134998736601088 |
---|---|
author | Gobbato, Thomas Volpato, Giulia Alice Sartorel, Andrea Bonchio, Marcella |
author_facet | Gobbato, Thomas Volpato, Giulia Alice Sartorel, Andrea Bonchio, Marcella |
author_sort | Gobbato, Thomas |
collection | PubMed |
description | The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the reductive conversion of carbon dioxide or nitrogen, as primary sources of energy-rich products. Devices capable of performing such transformations are based on the integration of three sequential core functions: light absorption, photo-induced charge separation, and the photo-activated breaking/making of molecular bonds via specific catalytic routes. The key to success does not rely simply on the individual components' performance, but on their optimized integration in terms of type, number, geometry, spacing, and linkers dictating the photosynthetic architecture. Natural photosynthesis has evolved along this concept, by integrating each functional component in one specialized “body” (from the Greek word “soma”) to enable the conversion of light quanta with high efficiency. Therefore, the natural “quantasome” represents the key paradigm to inspire man-made constructs for artificial photosynthesis. The case study presented in this perspective article deals with the design of artificial photosynthetic systems for water oxidation and oxygen production, engineered as molecular architectures then rendered on electrodic surfaces. Water oxidation to oxygen is indeed the pervasive oxidative reaction used by photosynthetic organisms, as the source of reducing equivalents (electrons and protons) to be delivered for the processing of high-energy products. Considering the vast and abundant supply of water (including seawater) as a renewable source on our planet, this is also a very appealing option for photosynthetic energy devices. We will showcase the progress in the last 15 years (2009–2023) in the strategies for integrating functional building blocks as molecular photosensitizers, multi-redox water oxidation catalysts and semiconductor materials, highlighting how additional components such as redox mediators, hydrophilic/hydrophobic pendants, and protective layers can impact on the overall photosynthetic performance. Emerging directions consider the modular tuning of the multi-component device, in order to target a diversity of photocatalytic oxidations, expanding the scope of the primary electron and proton sources while enhancing the added-value of the oxidation product beyond oxygen: the selective photooxidation of organics combines the green chemistry vision with renewable energy schemes and is expected to explode in coming years. |
format | Online Article Text |
id | pubmed-10646967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-106469672023-10-04 A breath of sunshine: oxygenic photosynthesis by functional molecular architectures Gobbato, Thomas Volpato, Giulia Alice Sartorel, Andrea Bonchio, Marcella Chem Sci Chemistry The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the reductive conversion of carbon dioxide or nitrogen, as primary sources of energy-rich products. Devices capable of performing such transformations are based on the integration of three sequential core functions: light absorption, photo-induced charge separation, and the photo-activated breaking/making of molecular bonds via specific catalytic routes. The key to success does not rely simply on the individual components' performance, but on their optimized integration in terms of type, number, geometry, spacing, and linkers dictating the photosynthetic architecture. Natural photosynthesis has evolved along this concept, by integrating each functional component in one specialized “body” (from the Greek word “soma”) to enable the conversion of light quanta with high efficiency. Therefore, the natural “quantasome” represents the key paradigm to inspire man-made constructs for artificial photosynthesis. The case study presented in this perspective article deals with the design of artificial photosynthetic systems for water oxidation and oxygen production, engineered as molecular architectures then rendered on electrodic surfaces. Water oxidation to oxygen is indeed the pervasive oxidative reaction used by photosynthetic organisms, as the source of reducing equivalents (electrons and protons) to be delivered for the processing of high-energy products. Considering the vast and abundant supply of water (including seawater) as a renewable source on our planet, this is also a very appealing option for photosynthetic energy devices. We will showcase the progress in the last 15 years (2009–2023) in the strategies for integrating functional building blocks as molecular photosensitizers, multi-redox water oxidation catalysts and semiconductor materials, highlighting how additional components such as redox mediators, hydrophilic/hydrophobic pendants, and protective layers can impact on the overall photosynthetic performance. Emerging directions consider the modular tuning of the multi-component device, in order to target a diversity of photocatalytic oxidations, expanding the scope of the primary electron and proton sources while enhancing the added-value of the oxidation product beyond oxygen: the selective photooxidation of organics combines the green chemistry vision with renewable energy schemes and is expected to explode in coming years. The Royal Society of Chemistry 2023-10-04 /pmc/articles/PMC10646967/ /pubmed/38020375 http://dx.doi.org/10.1039/d3sc03780k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Gobbato, Thomas Volpato, Giulia Alice Sartorel, Andrea Bonchio, Marcella A breath of sunshine: oxygenic photosynthesis by functional molecular architectures |
title | A breath of sunshine: oxygenic photosynthesis by functional molecular architectures |
title_full | A breath of sunshine: oxygenic photosynthesis by functional molecular architectures |
title_fullStr | A breath of sunshine: oxygenic photosynthesis by functional molecular architectures |
title_full_unstemmed | A breath of sunshine: oxygenic photosynthesis by functional molecular architectures |
title_short | A breath of sunshine: oxygenic photosynthesis by functional molecular architectures |
title_sort | breath of sunshine: oxygenic photosynthesis by functional molecular architectures |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646967/ https://www.ncbi.nlm.nih.gov/pubmed/38020375 http://dx.doi.org/10.1039/d3sc03780k |
work_keys_str_mv | AT gobbatothomas abreathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures AT volpatogiuliaalice abreathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures AT sartorelandrea abreathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures AT bonchiomarcella abreathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures AT gobbatothomas breathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures AT volpatogiuliaalice breathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures AT sartorelandrea breathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures AT bonchiomarcella breathofsunshineoxygenicphotosynthesisbyfunctionalmoleculararchitectures |