Cargando…

Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension

BACKGROUND: Genetic factors influence lifespan. In humans, there appears to be a particularly strong genetic effect in those aged ≥ 90 years. An important contribution is nutrient sensing genes which confer cell resilience. METHODS: Our research has been investigating the genetic factors by longitud...

Descripción completa

Detalles Bibliográficos
Autores principales: Morris, Brian J, Donlon, Timothy A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647014/
https://www.ncbi.nlm.nih.gov/pubmed/37561089
http://dx.doi.org/10.1093/ajh/hpad070
_version_ 1785135008204193792
author Morris, Brian J
Donlon, Timothy A
author_facet Morris, Brian J
Donlon, Timothy A
author_sort Morris, Brian J
collection PubMed
description BACKGROUND: Genetic factors influence lifespan. In humans, there appears to be a particularly strong genetic effect in those aged ≥ 90 years. An important contribution is nutrient sensing genes which confer cell resilience. METHODS: Our research has been investigating the genetic factors by longitudinal studies of American men of Japanese descent living on the island of Oahu in Hawaii. This cohort began as the Honolulu Heart Program in the mid-1960s and most subjects are now deceased. RESULTS: We previously discovered various genes containing polymorphisms associated with longevity. In recent investigations of the mechanism involved we found that the longevity genotypes ameliorated the risk of mortality posed by having a cardiometabolic disease (CMD)—most prominently hypertension. For the gene FOXO3 the protective alleles mitigated the risk of hypertension, coronary heart disease (CHD) and diabetes. For the kinase MAP3K5 it was hypertension, CHD and diabetes, for the kinase receptor PIK3R1 hypertension, CHD and stroke, and for the growth hormone receptor gene (GHR) and vascular endothelial growth factor receptor 1 gene (FLT1), it was nullifying the higher mortality risk posed by hypertension. Subjects with a CMD who had a longevity genotype had similar survival as men without CMD. No variant protected against risk of death from cancer. We have postulated that the longevity-associated genotypes reduced mortality risk by effects on intracellular resilience mechanisms. In a proteomics study, 43 “stress” proteins and associated biological pathways were found to influence the association of FOXO3 genotype with reduced mortality. CONCLUSIONS: Our landmark findings indicate how heritable genetic components affect longevity.
format Online
Article
Text
id pubmed-10647014
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-106470142023-08-10 Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension Morris, Brian J Donlon, Timothy A Am J Hypertens Review BACKGROUND: Genetic factors influence lifespan. In humans, there appears to be a particularly strong genetic effect in those aged ≥ 90 years. An important contribution is nutrient sensing genes which confer cell resilience. METHODS: Our research has been investigating the genetic factors by longitudinal studies of American men of Japanese descent living on the island of Oahu in Hawaii. This cohort began as the Honolulu Heart Program in the mid-1960s and most subjects are now deceased. RESULTS: We previously discovered various genes containing polymorphisms associated with longevity. In recent investigations of the mechanism involved we found that the longevity genotypes ameliorated the risk of mortality posed by having a cardiometabolic disease (CMD)—most prominently hypertension. For the gene FOXO3 the protective alleles mitigated the risk of hypertension, coronary heart disease (CHD) and diabetes. For the kinase MAP3K5 it was hypertension, CHD and diabetes, for the kinase receptor PIK3R1 hypertension, CHD and stroke, and for the growth hormone receptor gene (GHR) and vascular endothelial growth factor receptor 1 gene (FLT1), it was nullifying the higher mortality risk posed by hypertension. Subjects with a CMD who had a longevity genotype had similar survival as men without CMD. No variant protected against risk of death from cancer. We have postulated that the longevity-associated genotypes reduced mortality risk by effects on intracellular resilience mechanisms. In a proteomics study, 43 “stress” proteins and associated biological pathways were found to influence the association of FOXO3 genotype with reduced mortality. CONCLUSIONS: Our landmark findings indicate how heritable genetic components affect longevity. Oxford University Press 2023-08-10 /pmc/articles/PMC10647014/ /pubmed/37561089 http://dx.doi.org/10.1093/ajh/hpad070 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of American Journal of Hypertension, Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Morris, Brian J
Donlon, Timothy A
Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension
title Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension
title_full Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension
title_fullStr Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension
title_full_unstemmed Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension
title_short Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension
title_sort genes that extend lifespan may do so by mitigating the increased risk of death posed by having hypertension
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647014/
https://www.ncbi.nlm.nih.gov/pubmed/37561089
http://dx.doi.org/10.1093/ajh/hpad070
work_keys_str_mv AT morrisbrianj genesthatextendlifespanmaydosobymitigatingtheincreasedriskofdeathposedbyhavinghypertension
AT donlontimothya genesthatextendlifespanmaydosobymitigatingtheincreasedriskofdeathposedbyhavinghypertension