Cargando…

Efficient synthesis of 3-alkyl-2-(-1H-1,2,3-triazolyl)methyl)thio)-2,3-dihydroquinazolin-4(1H)-one derivative via multistep synthesis approach by novel Cu@Py-Oxa@SPION catalyst

In this pared, an efficient method is introduced for the synthesis of 3-alkyl-2-(((4-(2-oxopropyl)-1H-1,2,3-triazol-1-yl)alkyl)thio)-2,3-dihydroquinazolin-4(1H)-one derivatives. These novel products have both 1,2,3-triazole and quinazolinone in their structures. For the synthesis of these products,...

Descripción completa

Detalles Bibliográficos
Autores principales: Sherafati, Alireza, Moradi, Shahram, Mahdavi, Mohammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647046/
https://www.ncbi.nlm.nih.gov/pubmed/37964295
http://dx.doi.org/10.1186/s13065-023-01072-4
Descripción
Sumario:In this pared, an efficient method is introduced for the synthesis of 3-alkyl-2-(((4-(2-oxopropyl)-1H-1,2,3-triazol-1-yl)alkyl)thio)-2,3-dihydroquinazolin-4(1H)-one derivatives. These novel products have both 1,2,3-triazole and quinazolinone in their structures. For the synthesis of these products, a novel catalyst is designed, synthesized, and characterized by the immobilization of copper onto modified magnetic iron oxide. The catalyst (denoted: Cu@Py-Oxa@SPION) was characterized by several characterization techniques. In this regard, 16 3-alkyl-2-(((4-(2-oxopropyl)-1H-1,2,3-triazol-1-yl)alkyl)thio)-2,3-dihydroquinazolin-4(1H)-one derivatives were synthesized in high isolated yields (77–86%). As an advantage, the catalyst is highly recoverable and its activity has not decreased after 7 sequential runs. The method is very efficient for the synthesis of the products in high isolated yields under mild reaction conditions in a green solvent. The scope of the method is broad and several examples were successfully synthesized using starting materials with different functional groups. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13065-023-01072-4.