Cargando…
Similarity-assisted variational autoencoder for nonlinear dimension reduction with application to single-cell RNA sequencing data
BACKGROUND: Deep generative models naturally become nonlinear dimension reduction tools to visualize large-scale datasets such as single-cell RNA sequencing datasets for revealing latent grouping patterns or identifying outliers. The variational autoencoder (VAE) is a popular deep generative method...
Autores principales: | Kim, Gwangwoo, Chun, Hyonho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647110/ https://www.ncbi.nlm.nih.gov/pubmed/37964243 http://dx.doi.org/10.1186/s12859-023-05552-1 |
Ejemplares similares
-
VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
por: Wang, Dongfang, et al.
Publicado: (2018) -
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
por: Chun, Hyonho, et al.
Publicado: (2010) -
A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis
por: Lin, Eugene, et al.
Publicado: (2020) -
Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
por: Carilli, Maria, et al.
Publicado: (2023) -
Feature Reduction for Molecular Similarity Searching Based on Autoencoder Deep Learning
por: Nasser, Maged, et al.
Publicado: (2022)