Cargando…

Potential ‘anti-cancer’ effects of esketamine on proliferation, apoptosis, migration and invasion in esophageal squamous carcinoma cells

BACKGROUND: Esketamine, an N-methyl-D-aspartate receptor antagonist, is commonly used for anesthesia and analgesia clinically. It was reported to negatively regulate cell proliferation, metastasis and apoptosis in cancer cells, including lung cancer and pancreatic cancer. However, its impact on esop...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chao, Shi, Jingpu, Wei, Sisi, Jia, Huiqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647146/
https://www.ncbi.nlm.nih.gov/pubmed/37968758
http://dx.doi.org/10.1186/s40001-023-01511-x
Descripción
Sumario:BACKGROUND: Esketamine, an N-methyl-D-aspartate receptor antagonist, is commonly used for anesthesia and analgesia clinically. It was reported to negatively regulate cell proliferation, metastasis and apoptosis in cancer cells, including lung cancer and pancreatic cancer. However, its impact on esophageal squamous cell carcinoma (ESCC) malignance and underlying mechanism remain elusive. This study was aimed to investigate the antitumor effects of esketamine on ESCC in vitro. METHODS: ESCC cell lines (KYSE-30 and KYSE-150) were cultured and treated with different concentrations (0.1, 0.2, 0.4, 0.8, 1, 2 mM) of esketamine. Their proliferation, apoptosis, migration and invasion were assessed with various assays. Furthermore, mass spectrometry-based proteomic analysis and GO/KEGG enrichment analysis were applied to characterize the differentially expressed proteins (DEPs) with or without esketamine treatment. Some key proteins identified from proteomic analysis were further validated with Western blotting and bioinformatics analysis. RESULTS: Esketamine significantly inhibited the proliferation, migration, invasion and promoted apoptosis of the both types of cell lines in a dose- and time-dependent manner. A total of 321 common DEPs, including 97 upregulated and 224 downregulated proteins, were found with HPLC–MS analyses. GO/KEGG enrichment analysis suggested that esketamine affected cell population proliferation, GTPase activity and Apelin signaling pathway. The ERCC6L, AHR and KIF2C protein expression was significantly downregulated in these ESCC cells treated with esketamine compared to the controls and their changes were associated with the suppressive effects of esketamine on ESCC through bioinformatics analysis. CONCLUSIONS: Our work demonstrated that esketamine has potential anti-ESCC properties in vitro but subjected to further in vivo and clinical study. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40001-023-01511-x.