Cargando…
Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances
Antibiotic resistance is rising and poses a serious threat to human health on a worldwide scale. It can make it more difficult to cure common infections, raise medical expenditures, and increase mortality. In order to combat the development of biofilms and treat fatal bacterial infections, multifunc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647218/ https://www.ncbi.nlm.nih.gov/pubmed/37947735 http://dx.doi.org/10.3390/nano13212891 |
_version_ | 1785135055736143872 |
---|---|
author | Amna, Touseef Hassan, M. Shamshi |
author_facet | Amna, Touseef Hassan, M. Shamshi |
author_sort | Amna, Touseef |
collection | PubMed |
description | Antibiotic resistance is rising and poses a serious threat to human health on a worldwide scale. It can make it more difficult to cure common infections, raise medical expenditures, and increase mortality. In order to combat the development of biofilms and treat fatal bacterial infections, multifunctional polymeric nanofibers or nanotextured materials with specific structural features and special physiochemical capabilities have become a crucial tool. Due to the increased antibiotic resistance of many diseases, nanofibers with antibacterial activity are essential. Electrospinning is a flexible process able to produce fine fibers with specified properties by modifying variables such as the concentration of the solution, the feed flow, and the electric voltage. Substantial advancements have been made regarding the formation of nanofibers or nanotextured materials for a variety of applications, along with the development of electrospinning techniques in recent years. Using well-defined antimicrobial nanoparticles, encapsulating traditional therapeutic agents, plant-based bioactive agents, and pure compounds in polymer nanofibers has resulted in outstanding antimicrobial activity and has aided in curing deadly microbial infections. A plethora of studies have revealed that electrospinning is an effective technique for the production of antimicrobial fibers for the environmental, biomedical, pharmaceutical, and food sectors. Nevertheless, numerous studies have also demonstrated that the surface characteristics of substrates, such as holes, fibers, and ridges at the nanoscale, have an impact on cell proliferation, adhesion, and orientation. |
format | Online Article Text |
id | pubmed-10647218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106472182023-10-31 Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances Amna, Touseef Hassan, M. Shamshi Nanomaterials (Basel) Editorial Antibiotic resistance is rising and poses a serious threat to human health on a worldwide scale. It can make it more difficult to cure common infections, raise medical expenditures, and increase mortality. In order to combat the development of biofilms and treat fatal bacterial infections, multifunctional polymeric nanofibers or nanotextured materials with specific structural features and special physiochemical capabilities have become a crucial tool. Due to the increased antibiotic resistance of many diseases, nanofibers with antibacterial activity are essential. Electrospinning is a flexible process able to produce fine fibers with specified properties by modifying variables such as the concentration of the solution, the feed flow, and the electric voltage. Substantial advancements have been made regarding the formation of nanofibers or nanotextured materials for a variety of applications, along with the development of electrospinning techniques in recent years. Using well-defined antimicrobial nanoparticles, encapsulating traditional therapeutic agents, plant-based bioactive agents, and pure compounds in polymer nanofibers has resulted in outstanding antimicrobial activity and has aided in curing deadly microbial infections. A plethora of studies have revealed that electrospinning is an effective technique for the production of antimicrobial fibers for the environmental, biomedical, pharmaceutical, and food sectors. Nevertheless, numerous studies have also demonstrated that the surface characteristics of substrates, such as holes, fibers, and ridges at the nanoscale, have an impact on cell proliferation, adhesion, and orientation. MDPI 2023-10-31 /pmc/articles/PMC10647218/ /pubmed/37947735 http://dx.doi.org/10.3390/nano13212891 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Editorial Amna, Touseef Hassan, M. Shamshi Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances |
title | Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances |
title_full | Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances |
title_fullStr | Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances |
title_full_unstemmed | Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances |
title_short | Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances |
title_sort | nanofibers and nanotextured materials: design insights, bactericidal mechanisms and environmental advances |
topic | Editorial |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647218/ https://www.ncbi.nlm.nih.gov/pubmed/37947735 http://dx.doi.org/10.3390/nano13212891 |
work_keys_str_mv | AT amnatouseef nanofibersandnanotexturedmaterialsdesigninsightsbactericidalmechanismsandenvironmentaladvances AT hassanmshamshi nanofibersandnanotexturedmaterialsdesigninsightsbactericidalmechanismsandenvironmentaladvances |