Cargando…
Enhanced Feature Extraction Network Based on Acoustic Signal Feature Learning for Bearing Fault Diagnosis
The method of acoustic radiation signal detection not only enables contactless measurement but also provides comprehensive state information during equipment operation. This paper proposes an enhanced feature extraction network (EFEN) for fault diagnosis of rolling bearings based on acoustic signal...
Autores principales: | Luo, Yuanqing, Lu, Wenxia, Kang, Shuang, Tian, Xueyong, Kang, Xiaoqi, Sun, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647236/ https://www.ncbi.nlm.nih.gov/pubmed/37960402 http://dx.doi.org/10.3390/s23218703 |
Ejemplares similares
-
Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
por: Zhu, Huibin, et al.
Publicado: (2021) -
Compound Fault Feature Extraction of Rolling Bearing Acoustic Signals Based on AVMD-IMVO-MCKD
por: Wu, Shishuai, et al.
Publicado: (2022) -
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
por: Hoang, Duy Tang, et al.
Publicado: (2021) -
A Novel Deep Convolutional Neural Network Combining Global Feature Extraction and Detailed Feature Extraction for Bearing Compound Fault Diagnosis
por: Han, Shuzhen, et al.
Publicado: (2023) -
Rolling Bearing Incipient Fault Diagnosis Method Based on Improved Transfer Learning with Hybrid Feature Extraction
por: Yang, Zhengni, et al.
Publicado: (2021)