Cargando…
In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields
In recent years, the application of pulsed electric fields with very short durations (nanoseconds) and extremely high amplitudes (MV/m) has been investigated for novel medical purposes. Various electric protocols have been explored for different objectives, including the utilization of fractionated...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647260/ https://www.ncbi.nlm.nih.gov/pubmed/37958601 http://dx.doi.org/10.3390/ijms242115616 |
_version_ | 1785135065512017920 |
---|---|
author | Camera, Francesca Colantoni, Eleonora Garcia-Sanchez, Tomas Benassi, Barbara Consales, Claudia Muscat, Adeline Vallet, Leslie Mir, Luis M. Andre, Franck Merla, Caterina |
author_facet | Camera, Francesca Colantoni, Eleonora Garcia-Sanchez, Tomas Benassi, Barbara Consales, Claudia Muscat, Adeline Vallet, Leslie Mir, Luis M. Andre, Franck Merla, Caterina |
author_sort | Camera, Francesca |
collection | PubMed |
description | In recent years, the application of pulsed electric fields with very short durations (nanoseconds) and extremely high amplitudes (MV/m) has been investigated for novel medical purposes. Various electric protocols have been explored for different objectives, including the utilization of fractionated pulse doses to enhance cell electrosensitization to the uptake of different markers or an increase in apoptosis. This study focused on the use of fluorescence imaging to examine molecular calcium fluxes induced by different fractionated protocols of short electric pulses in neuroblastoma (SH-SY5Y) and mesenchymal stem cells (HaMSCs) that were electroporated using nanosecond pulsed electric fields. In our experimental setup, we did not observe cell electrosensitization in terms of an increase in calcium flux following the administration of fractionated doses of nanosecond pulsed electric fields with respect to the non-fractionated dose. However, we observed the targeted activation of calcium-dependent genes (c-FOS, c-JUN, EGR1, NURR-1, β3-TUBULIN) based on the duration of calcium flux, independent of the instantaneous levels achieved but solely dependent on the final plateau reached. This level of control may have potential applications in various medical and biological treatments that rely on calcium and the delivery of nanosecond pulsed electric fields. |
format | Online Article Text |
id | pubmed-10647260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106472602023-10-26 In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields Camera, Francesca Colantoni, Eleonora Garcia-Sanchez, Tomas Benassi, Barbara Consales, Claudia Muscat, Adeline Vallet, Leslie Mir, Luis M. Andre, Franck Merla, Caterina Int J Mol Sci Article In recent years, the application of pulsed electric fields with very short durations (nanoseconds) and extremely high amplitudes (MV/m) has been investigated for novel medical purposes. Various electric protocols have been explored for different objectives, including the utilization of fractionated pulse doses to enhance cell electrosensitization to the uptake of different markers or an increase in apoptosis. This study focused on the use of fluorescence imaging to examine molecular calcium fluxes induced by different fractionated protocols of short electric pulses in neuroblastoma (SH-SY5Y) and mesenchymal stem cells (HaMSCs) that were electroporated using nanosecond pulsed electric fields. In our experimental setup, we did not observe cell electrosensitization in terms of an increase in calcium flux following the administration of fractionated doses of nanosecond pulsed electric fields with respect to the non-fractionated dose. However, we observed the targeted activation of calcium-dependent genes (c-FOS, c-JUN, EGR1, NURR-1, β3-TUBULIN) based on the duration of calcium flux, independent of the instantaneous levels achieved but solely dependent on the final plateau reached. This level of control may have potential applications in various medical and biological treatments that rely on calcium and the delivery of nanosecond pulsed electric fields. MDPI 2023-10-26 /pmc/articles/PMC10647260/ /pubmed/37958601 http://dx.doi.org/10.3390/ijms242115616 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Camera, Francesca Colantoni, Eleonora Garcia-Sanchez, Tomas Benassi, Barbara Consales, Claudia Muscat, Adeline Vallet, Leslie Mir, Luis M. Andre, Franck Merla, Caterina In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields |
title | In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields |
title_full | In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields |
title_fullStr | In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields |
title_full_unstemmed | In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields |
title_short | In Vitro Imaging and Molecular Characterization of Ca(2+) Flux Modulation by Nanosecond Pulsed Electric Fields |
title_sort | in vitro imaging and molecular characterization of ca(2+) flux modulation by nanosecond pulsed electric fields |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647260/ https://www.ncbi.nlm.nih.gov/pubmed/37958601 http://dx.doi.org/10.3390/ijms242115616 |
work_keys_str_mv | AT camerafrancesca invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT colantonieleonora invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT garciasancheztomas invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT benassibarbara invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT consalesclaudia invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT muscatadeline invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT valletleslie invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT mirluism invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT andrefranck invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields AT merlacaterina invitroimagingandmolecularcharacterizationofca2fluxmodulationbynanosecondpulsedelectricfields |