Cargando…
Prediction of Pollutant Concentration Based on Spatial–Temporal Attention, ResNet and ConvLSTM
Accurate and reliable prediction of air pollutant concentrations is important for rational avoidance of air pollution events and government policy responses. However, due to the mobility and dynamics of pollution sources, meteorological conditions, and transformation processes, pollutant concentrati...
Autores principales: | Chen, Cai, Qiu, Agen, Chen, Haoyu, Chen, Yajun, Liu, Xu, Li, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647283/ https://www.ncbi.nlm.nih.gov/pubmed/37960562 http://dx.doi.org/10.3390/s23218863 |
Ejemplares similares
-
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification
por: Li, Li, et al.
Publicado: (2022) -
Learning Spatio Temporal Tactile Features with a ConvLSTM for the Direction Of Slip Detection
por: Zapata-Impata, Brayan S., et al.
Publicado: (2019) -
Facial expression recognition in videos using hybrid CNN & ConvLSTM
por: Singh, Rajesh, et al.
Publicado: (2023) -
BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation
por: Yi, Yugen, et al.
Publicado: (2022)