Cargando…
Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry
This research presents an experimental study focused on measuring temperature at the tool flank during the up-milling process at high cutting speed. The proposed system deals with emissivity compensation through a two-photodetector system and during calibration. A ratio pyrometer composed of two pho...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647326/ https://www.ncbi.nlm.nih.gov/pubmed/37960667 http://dx.doi.org/10.3390/s23218968 |
_version_ | 1785135080997388288 |
---|---|
author | Espinoza-Torres, Isaí Martínez-Ramírez, Israel Sierra-Hernández, Juan Manuel Jauregui-Vazquez, Daniel Gutiérrez-Rivera, Miguel Ernesto Carmen, Felipe de Jesús Torres-Del Lozano-Hernández, Tania |
author_facet | Espinoza-Torres, Isaí Martínez-Ramírez, Israel Sierra-Hernández, Juan Manuel Jauregui-Vazquez, Daniel Gutiérrez-Rivera, Miguel Ernesto Carmen, Felipe de Jesús Torres-Del Lozano-Hernández, Tania |
author_sort | Espinoza-Torres, Isaí |
collection | PubMed |
description | This research presents an experimental study focused on measuring temperature at the tool flank during the up-milling process at high cutting speed. The proposed system deals with emissivity compensation through a two-photodetector system and during calibration. A ratio pyrometer composed of two photodetectors and a multimode fiber-optic coupler is employed to capture the radiation emitted by the cutting insert. The pyrometer is calibrated using an innovative calibration system that addresses theoretical discrepancies arising from various factors affecting the measurement of cutting temperature. This calibration system replicates the milling process to generate a calibration curve. Experimentally, AISI 4140 steel is machined with coated tungsten carbide inserts, using cutting speeds of 300 and 400 m/min, and feed rates of 0.08 and 0.16 mm/tooth. The results reveal a maximum recorded cutting temperature of 518 °C and a minimum of 304 °C. The cutting temperature tends to increase with higher cutting speeds and feed rates, with cutting speed being the more influential factor in this increase. Both the pyrometer calibration and experimental outcomes yield satisfactory results. Finally, the results showed that the process and the device prove to be a convenient, effective, and precise method of measuring cutting temperature in machine processes. |
format | Online Article Text |
id | pubmed-10647326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106473262023-11-04 Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry Espinoza-Torres, Isaí Martínez-Ramírez, Israel Sierra-Hernández, Juan Manuel Jauregui-Vazquez, Daniel Gutiérrez-Rivera, Miguel Ernesto Carmen, Felipe de Jesús Torres-Del Lozano-Hernández, Tania Sensors (Basel) Article This research presents an experimental study focused on measuring temperature at the tool flank during the up-milling process at high cutting speed. The proposed system deals with emissivity compensation through a two-photodetector system and during calibration. A ratio pyrometer composed of two photodetectors and a multimode fiber-optic coupler is employed to capture the radiation emitted by the cutting insert. The pyrometer is calibrated using an innovative calibration system that addresses theoretical discrepancies arising from various factors affecting the measurement of cutting temperature. This calibration system replicates the milling process to generate a calibration curve. Experimentally, AISI 4140 steel is machined with coated tungsten carbide inserts, using cutting speeds of 300 and 400 m/min, and feed rates of 0.08 and 0.16 mm/tooth. The results reveal a maximum recorded cutting temperature of 518 °C and a minimum of 304 °C. The cutting temperature tends to increase with higher cutting speeds and feed rates, with cutting speed being the more influential factor in this increase. Both the pyrometer calibration and experimental outcomes yield satisfactory results. Finally, the results showed that the process and the device prove to be a convenient, effective, and precise method of measuring cutting temperature in machine processes. MDPI 2023-11-04 /pmc/articles/PMC10647326/ /pubmed/37960667 http://dx.doi.org/10.3390/s23218968 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Espinoza-Torres, Isaí Martínez-Ramírez, Israel Sierra-Hernández, Juan Manuel Jauregui-Vazquez, Daniel Gutiérrez-Rivera, Miguel Ernesto Carmen, Felipe de Jesús Torres-Del Lozano-Hernández, Tania Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry |
title | Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry |
title_full | Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry |
title_fullStr | Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry |
title_full_unstemmed | Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry |
title_short | Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry |
title_sort | measurement of cutting temperature in interrupted machining using optical spectrometry |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647326/ https://www.ncbi.nlm.nih.gov/pubmed/37960667 http://dx.doi.org/10.3390/s23218968 |
work_keys_str_mv | AT espinozatorresisai measurementofcuttingtemperatureininterruptedmachiningusingopticalspectrometry AT martinezramirezisrael measurementofcuttingtemperatureininterruptedmachiningusingopticalspectrometry AT sierrahernandezjuanmanuel measurementofcuttingtemperatureininterruptedmachiningusingopticalspectrometry AT jaureguivazquezdaniel measurementofcuttingtemperatureininterruptedmachiningusingopticalspectrometry AT gutierrezriveramiguelernesto measurementofcuttingtemperatureininterruptedmachiningusingopticalspectrometry AT carmenfelipedejesustorresdel measurementofcuttingtemperatureininterruptedmachiningusingopticalspectrometry AT lozanohernandeztania measurementofcuttingtemperatureininterruptedmachiningusingopticalspectrometry |