Cargando…

A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile

Fishing has provided mankind with a protein-rich source of food and labor, allowing for the development of an important industry, which has led to the overexploitation of most targeted fish species. The sustainable management of these natural resources requires effective control of fish landings and...

Descripción completa

Detalles Bibliográficos
Autores principales: Pezoa, Jorge E., Ramírez, Diego A., Godoy, Cristofher A., Saavedra, María F., Restrepo, Silvia E., Coelho-Caro, Pablo A., Flores, Christopher A., Pérez, Francisco G., Torres, Sergio N., Urbina, Mauricio A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647371/
https://www.ncbi.nlm.nih.gov/pubmed/37960608
http://dx.doi.org/10.3390/s23218909
_version_ 1785135091422330880
author Pezoa, Jorge E.
Ramírez, Diego A.
Godoy, Cristofher A.
Saavedra, María F.
Restrepo, Silvia E.
Coelho-Caro, Pablo A.
Flores, Christopher A.
Pérez, Francisco G.
Torres, Sergio N.
Urbina, Mauricio A.
author_facet Pezoa, Jorge E.
Ramírez, Diego A.
Godoy, Cristofher A.
Saavedra, María F.
Restrepo, Silvia E.
Coelho-Caro, Pablo A.
Flores, Christopher A.
Pérez, Francisco G.
Torres, Sergio N.
Urbina, Mauricio A.
author_sort Pezoa, Jorge E.
collection PubMed
description Fishing has provided mankind with a protein-rich source of food and labor, allowing for the development of an important industry, which has led to the overexploitation of most targeted fish species. The sustainable management of these natural resources requires effective control of fish landings and, therefore, an accurate calculation of fishing quotas. This work proposes a deep learning-based spatial-spectral method to classify five pelagic species of interest for the Chilean fishing industry, including the targeted Engraulis ringens, Merluccius gayi, and Strangomera bentincki and non-targeted Normanichthtys crockeri and Stromateus stellatus fish species. This proof-of-concept method is composed of two channels of a convolutional neural network (CNN) architecture that processes the Red–Green–Blue (RGB) images and the visible and near-infrared (VIS-NIR) reflectance spectra of each species. The classification results of the CNN model achieved over 94% in all performance metrics, outperforming other state-of-the-art techniques. These results support the potential use of the proposed method to automatically monitor fish landings and, therefore, ensure compliance with the established fishing quotas.
format Online
Article
Text
id pubmed-10647371
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106473712023-11-02 A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile Pezoa, Jorge E. Ramírez, Diego A. Godoy, Cristofher A. Saavedra, María F. Restrepo, Silvia E. Coelho-Caro, Pablo A. Flores, Christopher A. Pérez, Francisco G. Torres, Sergio N. Urbina, Mauricio A. Sensors (Basel) Article Fishing has provided mankind with a protein-rich source of food and labor, allowing for the development of an important industry, which has led to the overexploitation of most targeted fish species. The sustainable management of these natural resources requires effective control of fish landings and, therefore, an accurate calculation of fishing quotas. This work proposes a deep learning-based spatial-spectral method to classify five pelagic species of interest for the Chilean fishing industry, including the targeted Engraulis ringens, Merluccius gayi, and Strangomera bentincki and non-targeted Normanichthtys crockeri and Stromateus stellatus fish species. This proof-of-concept method is composed of two channels of a convolutional neural network (CNN) architecture that processes the Red–Green–Blue (RGB) images and the visible and near-infrared (VIS-NIR) reflectance spectra of each species. The classification results of the CNN model achieved over 94% in all performance metrics, outperforming other state-of-the-art techniques. These results support the potential use of the proposed method to automatically monitor fish landings and, therefore, ensure compliance with the established fishing quotas. MDPI 2023-11-02 /pmc/articles/PMC10647371/ /pubmed/37960608 http://dx.doi.org/10.3390/s23218909 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pezoa, Jorge E.
Ramírez, Diego A.
Godoy, Cristofher A.
Saavedra, María F.
Restrepo, Silvia E.
Coelho-Caro, Pablo A.
Flores, Christopher A.
Pérez, Francisco G.
Torres, Sergio N.
Urbina, Mauricio A.
A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile
title A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile
title_full A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile
title_fullStr A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile
title_full_unstemmed A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile
title_short A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile
title_sort spatial-spectral classification method based on deep learning for controlling pelagic fish landings in chile
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647371/
https://www.ncbi.nlm.nih.gov/pubmed/37960608
http://dx.doi.org/10.3390/s23218909
work_keys_str_mv AT pezoajorgee aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT ramirezdiegoa aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT godoycristofhera aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT saavedramariaf aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT restreposilviae aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT coelhocaropabloa aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT floreschristophera aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT perezfranciscog aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT torressergion aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT urbinamauricioa aspatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT pezoajorgee spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT ramirezdiegoa spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT godoycristofhera spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT saavedramariaf spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT restreposilviae spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT coelhocaropabloa spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT floreschristophera spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT perezfranciscog spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT torressergion spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile
AT urbinamauricioa spatialspectralclassificationmethodbasedondeeplearningforcontrollingpelagicfishlandingsinchile