Cargando…
Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging
T(2)-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components of cervical cancer diagnosis. However, combining these channels for the training of deep learning models is challenging due to image misalignment. Here, we propose a novel multi-head framewor...
Autores principales: | Kalantar, Reza, Curcean, Sebastian, Winfield, Jessica M., Lin, Gigin, Messiou, Christina, Blackledge, Matthew D., Koh, Dow-Mu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647438/ https://www.ncbi.nlm.nih.gov/pubmed/37958277 http://dx.doi.org/10.3390/diagnostics13213381 |
Ejemplares similares
-
Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges
por: Kalantar, Reza, et al.
Publicado: (2021) -
Optimisation of b-values for the accurate estimation of the apparent diffusion coefficient (ADC) in whole-body diffusion-weighted MRI in patients with metastatic melanoma
por: Knill, Annemarie K., et al.
Publicado: (2022) -
Repeatability of quantitative individual lesion and total disease multiparametric whole-body MRI measurements in prostate cancer bone metastases
por: Donners, Ricardo, et al.
Publicado: (2023) -
CT-Based Pelvic T(1)-Weighted MR Image Synthesis Using UNet, UNet++ and Cycle-Consistent Generative Adversarial Network (Cycle-GAN)
por: Kalantar, Reza, et al.
Publicado: (2021) -
Accelerating Whole-Body Diffusion-weighted MRI with Deep Learning–based Denoising Image Filters
por: Zormpas-Petridis, Konstantinos, et al.
Publicado: (2021)