Cargando…
A Deep Learning Approach for Automatic Segmentation during Daily MRI-Linac Radiotherapy of Glioblastoma
SIMPLE SUMMARY: Current auto-segmentation methods for glioblastoma utilize mainly pre-operative 1.5T and 3T MRI. The first commercial MRI-linear accelerator (linac) radiation treatment platform acquires low-field (0.35T) post-operative MRI at the delivery of each treatment. This study presents the f...
Autores principales: | Breto, Adrian L., Cullison, Kaylie, Zacharaki, Evangelia I., Wallaengen, Veronica, Maziero, Danilo, Jones, Kolton, Valderrama, Alessandro, de la Fuente, Macarena I., Meshman, Jessica, Azzam, Gregory A., Ford, John C., Stoyanova, Radka, Mellon, Eric A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647471/ https://www.ncbi.nlm.nih.gov/pubmed/37958415 http://dx.doi.org/10.3390/cancers15215241 |
Ejemplares similares
-
Simulated Adaptive Radiotherapy for Shrinking Glioblastoma Resection Cavities on a Hybrid MRI–Linear Accelerator
por: Guevara, Beatriz, et al.
Publicado: (2023) -
Implementation and evaluation of a dynamic contrast enhanced MR perfusion protocol for glioblastoma using a 0.35T MRI-Linac system
por: Maziero, Danilo, et al.
Publicado: (2023) -
MR-Guided Radiotherapy for Brain and Spine Tumors
por: Maziero, Danilo, et al.
Publicado: (2021) -
Daily Tracking of Glioblastoma Resection Cavity, Cerebral Edema, and Tumor Volume with MRI-Guided Radiation Therapy
por: Mehta, Shahil, et al.
Publicado: (2018) -
Deep Learning for Per-Fraction Automatic Segmentation of Gross Tumor Volume (GTV) and Organs at Risk (OARs) in Adaptive Radiotherapy of Cervical Cancer
por: Breto, Adrian L., et al.
Publicado: (2022)