Cargando…
Convolutional Neural Network Defect Detection Algorithm for Wire Bonding X-ray Images
To address the challenges of complex backgrounds, small defect sizes, and diverse defect types in defect detection of wire bonding X-ray images, this paper proposes a convolutional-neural-network-based defect detection method called YOLO-CSS. This method designs a novel feature extraction network th...
Autores principales: | Zhan, Daohua, Huang, Renbin, Yi, Kunran, Yang, Xiuding, Shi, Zhuohao, Lin, Ruinan, Lin, Jian, Wang, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647530/ https://www.ncbi.nlm.nih.gov/pubmed/37763900 http://dx.doi.org/10.3390/mi14091737 |
Ejemplares similares
-
A Lightweight Method for Detecting IC Wire Bonding Defects in X-ray Images
por: Zhan, Daohua, et al.
Publicado: (2023) -
Strip Surface Defect Detection Algorithm Based on YOLOv5
por: Wang, Han, et al.
Publicado: (2023) -
ATNet: A Defect Detection Framework for X-ray Images of DIP Chip Lead Bonding
por: Huang, Renbin, et al.
Publicado: (2023) -
Automated Categorization of Multiclass Welding Defects Using the X-ray Image Augmentation and Convolutional Neural Network
por: Say, Dalila, et al.
Publicado: (2023) -
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021)