Cargando…
Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends
Biopolymers based on plant and animal proteins are interesting alternatives in the development of films with future prospects as food packaging. Considering that in recent years there has been an increasing interest in the valorization of agro-industrial residues and by-products and that the blendin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647550/ https://www.ncbi.nlm.nih.gov/pubmed/37959768 http://dx.doi.org/10.3390/molecules28217350 |
_version_ | 1785135133340205056 |
---|---|
author | López-de-Dicastillo, Carol Gómez-Estaca, Joaquín López-Carballo, Gracia Gavara, Rafael Hernández-Muñoz, Pilar |
author_facet | López-de-Dicastillo, Carol Gómez-Estaca, Joaquín López-Carballo, Gracia Gavara, Rafael Hernández-Muñoz, Pilar |
author_sort | López-de-Dicastillo, Carol |
collection | PubMed |
description | Biopolymers based on plant and animal proteins are interesting alternatives in the development of films with future prospects as food packaging. Considering that in recent years there has been an increasing interest in the valorization of agro-industrial residues and by-products and that the blending of polymers can lead to materials with improved properties, in this work, keratin-rich feather fibers and gliadins were blended at different ratios in order to develop sustainable and biodegradable films. Control gliadin G100, feather F100 films, and their blends at 3:1 (G75F25), 2:2 (G50F50), and 1:3 (G25F75) ratios were successfully developed through thermoprocessing. The physical properties were differentiated as a function of the concentration of both polymeric matrices. Although gliadins showed higher hydrophilicity as confirmed by their highest swelling degree, films with high gliadin ratios exhibited lower water vapor permeability values at low and medium relative humidities. On the other hand, the feather fiber-based films displayed the highest Young’s modulus values and provided an oxygen barrier to the blends, principally at the highest relative humidity. In conclusion, the blend of these protein-based polymers at different ratio resulted in interesting composites whose physical properties could be adjusted. |
format | Online Article Text |
id | pubmed-10647550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106475502023-10-30 Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends López-de-Dicastillo, Carol Gómez-Estaca, Joaquín López-Carballo, Gracia Gavara, Rafael Hernández-Muñoz, Pilar Molecules Article Biopolymers based on plant and animal proteins are interesting alternatives in the development of films with future prospects as food packaging. Considering that in recent years there has been an increasing interest in the valorization of agro-industrial residues and by-products and that the blending of polymers can lead to materials with improved properties, in this work, keratin-rich feather fibers and gliadins were blended at different ratios in order to develop sustainable and biodegradable films. Control gliadin G100, feather F100 films, and their blends at 3:1 (G75F25), 2:2 (G50F50), and 1:3 (G25F75) ratios were successfully developed through thermoprocessing. The physical properties were differentiated as a function of the concentration of both polymeric matrices. Although gliadins showed higher hydrophilicity as confirmed by their highest swelling degree, films with high gliadin ratios exhibited lower water vapor permeability values at low and medium relative humidities. On the other hand, the feather fiber-based films displayed the highest Young’s modulus values and provided an oxygen barrier to the blends, principally at the highest relative humidity. In conclusion, the blend of these protein-based polymers at different ratio resulted in interesting composites whose physical properties could be adjusted. MDPI 2023-10-30 /pmc/articles/PMC10647550/ /pubmed/37959768 http://dx.doi.org/10.3390/molecules28217350 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article López-de-Dicastillo, Carol Gómez-Estaca, Joaquín López-Carballo, Gracia Gavara, Rafael Hernández-Muñoz, Pilar Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends |
title | Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends |
title_full | Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends |
title_fullStr | Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends |
title_full_unstemmed | Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends |
title_short | Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends |
title_sort | agro-industrial protein waste and co-products valorization for the development of bioplastics: thermoprocessing and characterization of feather keratin/gliadin blends |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647550/ https://www.ncbi.nlm.nih.gov/pubmed/37959768 http://dx.doi.org/10.3390/molecules28217350 |
work_keys_str_mv | AT lopezdedicastillocarol agroindustrialproteinwasteandcoproductsvalorizationforthedevelopmentofbioplasticsthermoprocessingandcharacterizationoffeatherkeratingliadinblends AT gomezestacajoaquin agroindustrialproteinwasteandcoproductsvalorizationforthedevelopmentofbioplasticsthermoprocessingandcharacterizationoffeatherkeratingliadinblends AT lopezcarballogracia agroindustrialproteinwasteandcoproductsvalorizationforthedevelopmentofbioplasticsthermoprocessingandcharacterizationoffeatherkeratingliadinblends AT gavararafael agroindustrialproteinwasteandcoproductsvalorizationforthedevelopmentofbioplasticsthermoprocessingandcharacterizationoffeatherkeratingliadinblends AT hernandezmunozpilar agroindustrialproteinwasteandcoproductsvalorizationforthedevelopmentofbioplasticsthermoprocessingandcharacterizationoffeatherkeratingliadinblends |