Cargando…

A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes

Additive manufacturing technologies have developed rapidly in recent decades, pushing the limits of known manufacturing processes. The need to study the properties of the different materials used for these processes comprehensively and in detail has become a primary goal in order to get the best out...

Descripción completa

Detalles Bibliográficos
Autores principales: Golubović, Zorana, Danilov, Ivan, Bojović, Božica, Petrov, Ljubiša, Sedmak, Aleksandar, Mišković, Žarko, Mitrović, Nenad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647641/
https://www.ncbi.nlm.nih.gov/pubmed/37959878
http://dx.doi.org/10.3390/polym15214197
_version_ 1785135154799312896
author Golubović, Zorana
Danilov, Ivan
Bojović, Božica
Petrov, Ljubiša
Sedmak, Aleksandar
Mišković, Žarko
Mitrović, Nenad
author_facet Golubović, Zorana
Danilov, Ivan
Bojović, Božica
Petrov, Ljubiša
Sedmak, Aleksandar
Mišković, Žarko
Mitrović, Nenad
author_sort Golubović, Zorana
collection PubMed
description Additive manufacturing technologies have developed rapidly in recent decades, pushing the limits of known manufacturing processes. The need to study the properties of the different materials used for these processes comprehensively and in detail has become a primary goal in order to get the best out of the manufacturing itself. The widely used thermoplastic polymer material acrylonitrile butadiene styrene (ABS) was selected in the form of both filaments and ABS-like resins to investigate and compare the mechanical properties through a series of different tests. ABS-like resin material is commercially available, but it is not a sufficiently mechanically studied form of the material, which leads to the rather limited literature. Considering that ABS resin is a declared material that behaves like the ABS filament but in a different form, the objective of this study was to compare these two commercially available materials printed with three different 3D printers, namely Fused Deposition Modelling (FDM), Stereolithography (SLA) and Digital Light Processing (DLP). A total of 45 test specimens with geometries and test protocols conforming to the relevant standards were subjected to a series of tensile, three-point bending and compression tests to determine their mechanical properties. Characterization also included evaluation of morphology with 2D and 3D microscopy, dimensional accuracy of 3D scans, and Shore A hardness of each material and 3D printing process. Tensile testing results have shown that FDM toughness is 40% of the value for DLP. FDM elongation at break is 37% of DLP, while ultimate tensile stress for SLA is 27% higher than FDM value. Elastic modulus for FDM and SLA coincide. Flexure testing results indicate that value of DLP flexural modulus is 54% of the FDM value. SLA strain value is 59% of FDM, and DLP ultimate flexure stress is 77% of the value for FDM. Compression test results imply that FDM specimens absorb at least twice as much energy as vat polymerized specimens. Strain at break for SLA is 72% and strain at ultimate stress is 60% of FDM values. FDM yield stress is 32% higher than DLP value. SLA ultimate compressive stress is half of FDM, while value for DLP compressive modulus is 69% of the FDM value. The results obtained are beneficial and give a more comprehensive picture of the behavior of the ABS polymers used in different forms and different AM processes.
format Online
Article
Text
id pubmed-10647641
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106476412023-10-24 A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes Golubović, Zorana Danilov, Ivan Bojović, Božica Petrov, Ljubiša Sedmak, Aleksandar Mišković, Žarko Mitrović, Nenad Polymers (Basel) Article Additive manufacturing technologies have developed rapidly in recent decades, pushing the limits of known manufacturing processes. The need to study the properties of the different materials used for these processes comprehensively and in detail has become a primary goal in order to get the best out of the manufacturing itself. The widely used thermoplastic polymer material acrylonitrile butadiene styrene (ABS) was selected in the form of both filaments and ABS-like resins to investigate and compare the mechanical properties through a series of different tests. ABS-like resin material is commercially available, but it is not a sufficiently mechanically studied form of the material, which leads to the rather limited literature. Considering that ABS resin is a declared material that behaves like the ABS filament but in a different form, the objective of this study was to compare these two commercially available materials printed with three different 3D printers, namely Fused Deposition Modelling (FDM), Stereolithography (SLA) and Digital Light Processing (DLP). A total of 45 test specimens with geometries and test protocols conforming to the relevant standards were subjected to a series of tensile, three-point bending and compression tests to determine their mechanical properties. Characterization also included evaluation of morphology with 2D and 3D microscopy, dimensional accuracy of 3D scans, and Shore A hardness of each material and 3D printing process. Tensile testing results have shown that FDM toughness is 40% of the value for DLP. FDM elongation at break is 37% of DLP, while ultimate tensile stress for SLA is 27% higher than FDM value. Elastic modulus for FDM and SLA coincide. Flexure testing results indicate that value of DLP flexural modulus is 54% of the FDM value. SLA strain value is 59% of FDM, and DLP ultimate flexure stress is 77% of the value for FDM. Compression test results imply that FDM specimens absorb at least twice as much energy as vat polymerized specimens. Strain at break for SLA is 72% and strain at ultimate stress is 60% of FDM values. FDM yield stress is 32% higher than DLP value. SLA ultimate compressive stress is half of FDM, while value for DLP compressive modulus is 69% of the FDM value. The results obtained are beneficial and give a more comprehensive picture of the behavior of the ABS polymers used in different forms and different AM processes. MDPI 2023-10-24 /pmc/articles/PMC10647641/ /pubmed/37959878 http://dx.doi.org/10.3390/polym15214197 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Golubović, Zorana
Danilov, Ivan
Bojović, Božica
Petrov, Ljubiša
Sedmak, Aleksandar
Mišković, Žarko
Mitrović, Nenad
A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes
title A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes
title_full A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes
title_fullStr A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes
title_full_unstemmed A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes
title_short A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes
title_sort comprehensive mechanical examination of abs and abs-like polymers additively manufactured by material extrusion and vat photopolymerization processes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647641/
https://www.ncbi.nlm.nih.gov/pubmed/37959878
http://dx.doi.org/10.3390/polym15214197
work_keys_str_mv AT goluboviczorana acomprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT danilovivan acomprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT bojovicbozica acomprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT petrovljubisa acomprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT sedmakaleksandar acomprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT miskoviczarko acomprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT mitrovicnenad acomprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT goluboviczorana comprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT danilovivan comprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT bojovicbozica comprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT petrovljubisa comprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT sedmakaleksandar comprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT miskoviczarko comprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses
AT mitrovicnenad comprehensivemechanicalexaminationofabsandabslikepolymersadditivelymanufacturedbymaterialextrusionandvatphotopolymerizationprocesses