Cargando…
Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap
This study introduces a rapid motion-replanning technique driven by a semantic 3D voxel mapping system, essential for humanoid robots to autonomously navigate unknown territories through online environmental sensing. Addressing the challenges posed by the conventional approach based on polygon mesh...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647646/ https://www.ncbi.nlm.nih.gov/pubmed/37960538 http://dx.doi.org/10.3390/s23218837 |
_version_ | 1785135155942260736 |
---|---|
author | Tsuru, Masato Escande, Adrien Kumagai, Iori Murooka, Masaki Harada, Kensuke |
author_facet | Tsuru, Masato Escande, Adrien Kumagai, Iori Murooka, Masaki Harada, Kensuke |
author_sort | Tsuru, Masato |
collection | PubMed |
description | This study introduces a rapid motion-replanning technique driven by a semantic 3D voxel mapping system, essential for humanoid robots to autonomously navigate unknown territories through online environmental sensing. Addressing the challenges posed by the conventional approach based on polygon mesh or primitive extraction for mapping, we adopt semantic voxel mapping, utilizing our innovative Extended-Octomap (ExOctomap). This structure archives environmental normal vectors, outcomes of Euclidean Cluster Extraction, and principal component analysis within an Octree structure, facilitating an O (log N) efficiency in semantic accessibility from a position query [Formula: see text]. This strategy reduces the 6D contact pose search to simple 3D grid sampling. Moreover, voxel representation enables the search of collision-free trajectories online. Through experimental validation based on simulations and real robotic experiments, we demonstrate that our framework can efficiently adapt multi-contact motions across diverse environments, achieving near real-time planning speeds that range from 13.8 ms to 115.7 ms per contact. |
format | Online Article Text |
id | pubmed-10647646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106476462023-10-30 Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap Tsuru, Masato Escande, Adrien Kumagai, Iori Murooka, Masaki Harada, Kensuke Sensors (Basel) Article This study introduces a rapid motion-replanning technique driven by a semantic 3D voxel mapping system, essential for humanoid robots to autonomously navigate unknown territories through online environmental sensing. Addressing the challenges posed by the conventional approach based on polygon mesh or primitive extraction for mapping, we adopt semantic voxel mapping, utilizing our innovative Extended-Octomap (ExOctomap). This structure archives environmental normal vectors, outcomes of Euclidean Cluster Extraction, and principal component analysis within an Octree structure, facilitating an O (log N) efficiency in semantic accessibility from a position query [Formula: see text]. This strategy reduces the 6D contact pose search to simple 3D grid sampling. Moreover, voxel representation enables the search of collision-free trajectories online. Through experimental validation based on simulations and real robotic experiments, we demonstrate that our framework can efficiently adapt multi-contact motions across diverse environments, achieving near real-time planning speeds that range from 13.8 ms to 115.7 ms per contact. MDPI 2023-10-30 /pmc/articles/PMC10647646/ /pubmed/37960538 http://dx.doi.org/10.3390/s23218837 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tsuru, Masato Escande, Adrien Kumagai, Iori Murooka, Masaki Harada, Kensuke Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap |
title | Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap |
title_full | Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap |
title_fullStr | Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap |
title_full_unstemmed | Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap |
title_short | Online Multi-Contact Motion Replanning for Humanoid Robots with Semantic 3D Voxel Mapping: ExOctomap |
title_sort | online multi-contact motion replanning for humanoid robots with semantic 3d voxel mapping: exoctomap |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647646/ https://www.ncbi.nlm.nih.gov/pubmed/37960538 http://dx.doi.org/10.3390/s23218837 |
work_keys_str_mv | AT tsurumasato onlinemulticontactmotionreplanningforhumanoidrobotswithsemantic3dvoxelmappingexoctomap AT escandeadrien onlinemulticontactmotionreplanningforhumanoidrobotswithsemantic3dvoxelmappingexoctomap AT kumagaiiori onlinemulticontactmotionreplanningforhumanoidrobotswithsemantic3dvoxelmappingexoctomap AT murookamasaki onlinemulticontactmotionreplanningforhumanoidrobotswithsemantic3dvoxelmappingexoctomap AT haradakensuke onlinemulticontactmotionreplanningforhumanoidrobotswithsemantic3dvoxelmappingexoctomap |