Cargando…
Simplified Deep Reinforcement Learning Approach for Channel Prediction in Power Domain NOMA System
In this work, the impact of implementing Deep Reinforcement Learning (DRL) in predicting the channel parameters for user devices in a Power Domain Non-Orthogonal Multiple Access system (PD-NOMA) is investigated. In the channel prediction process, DRL based on deep Q networks (DQN) algorithm will be...
Autores principales: | Gaballa, Mohamed, Abbod, Maysam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647647/ https://www.ncbi.nlm.nih.gov/pubmed/37960708 http://dx.doi.org/10.3390/s23219010 |
Ejemplares similares
-
A Study on the Impact of Integrating Reinforcement Learning for Channel Prediction and Power Allocation Scheme in MISO-NOMA System
por: Gaballa, Mohamed, et al.
Publicado: (2023) -
Investigating the Combination of Deep Learning for Channel Estimation and Power Optimization in a Non-Orthogonal Multiple Access System
por: Gaballa, Mohamed, et al.
Publicado: (2022) -
Cooperative Power-Domain NOMA Systems: An Overview
por: Ghous, Mujtaba, et al.
Publicado: (2022) -
Reinforcement Learning-Based Joint User Pairing and Power Allocation in MIMO-NOMA Systems
por: Lee, Jaehee, et al.
Publicado: (2020) -
Adaptive Clustering of Users in Power Domain NOMA
por: Santos, Yuri P., et al.
Publicado: (2023)