Cargando…
Wind Field Digital Twins Sandbox System for Transmission Towers
Given the digitalization trends within the field of engineering, we propose a practical approach to engineering digitization. This method is established based on a physical sandbox model, camera equipment and simulation technology. We propose an image processing modeling method to establish high-pre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647694/ https://www.ncbi.nlm.nih.gov/pubmed/37960357 http://dx.doi.org/10.3390/s23218657 |
Sumario: | Given the digitalization trends within the field of engineering, we propose a practical approach to engineering digitization. This method is established based on a physical sandbox model, camera equipment and simulation technology. We propose an image processing modeling method to establish high-precision continuous mathematical models of transmission towers. The calculation of the wind field is realized by using wind speed calculations, a load-wind-direction-time algorithm and the Continuum-Discontinuum Element Method (CDEM). The sensitivity analysis of displacement- and acceleration-controlled transmission tower loads under two different wind direction conditions is conducted. The results show that the digital model exhibits a proportional relationship with the physical dimensions of the transmission tower model. The error between the numerical simulation results and the experimental results falls within a reasonable range. Nodes at higher positions of the transmission tower experience significantly higher forces compared to those at lower positions, and the structural forms with larger windward projected areas yield similar simulation results. The proposed digital twin system can help monitor the performance of structural bodies and assess the disaster degree in extreme conditions. It can guide specific maintenance and repair tasks. |
---|