Cargando…
Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks
The Internet of Things (IoT), projected to exceed 30 billion active device connections globally by 2025, presents an expansive attack surface. The frequent collection and dissemination of confidential data on these devices exposes them to significant security risks, including user information theft...
Autores principales: | Almaraz-Rivera, Josue Genaro, Cantoral-Ceballos, Jose Antonio, Botero, Juan Felipe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647748/ https://www.ncbi.nlm.nih.gov/pubmed/37960401 http://dx.doi.org/10.3390/s23218701 |
Ejemplares similares
-
Transport and Application Layer DDoS Attacks Detection to IoT Devices by Using Machine Learning and Deep Learning Models
por: Almaraz-Rivera, Josue Genaro, et al.
Publicado: (2022) -
Memcached: An Experimental Study of DDoS Attacks for the Wellbeing of IoT Applications
por: Mishra, Nivedita, et al.
Publicado: (2021) -
A Data Enhancement Algorithm for DDoS Attacks Using IoT
por: Lv, Haibin, et al.
Publicado: (2023) -
Resistance of IoT Sensors against DDoS Attack in Smart Home Environment
por: Huraj, Ladislav, et al.
Publicado: (2020) -
A Taxonomy of DDoS Attack Mitigation Approaches Featured by SDN Technologies in IoT Scenarios
por: Dantas Silva, Felipe S., et al.
Publicado: (2020)