Cargando…

Synthesis and Characterization of Proton-Conducting Composites Prepared by Introducing Imidazole or 1,2,4-Triazole into AlPO-5 and SAPO-5 Molecular Sieves

The present work concerns proton-conducting composites obtained by replacing the water molecules present in aluminophosphate and silicoaluminophosphate AFI-type molecular sieves (AlPO-5 and SAPO-5) with azole molecules (imidazole or 1,2,4-triazole). Both the introduction of azoles and the generation...

Descripción completa

Detalles Bibliográficos
Autores principales: Ostrowski, Adam, Jankowska, Aldona, Tabero, Agata, Janiszewska, Ewa, Kowalak, Stanisław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647750/
https://www.ncbi.nlm.nih.gov/pubmed/37959732
http://dx.doi.org/10.3390/molecules28217312
Descripción
Sumario:The present work concerns proton-conducting composites obtained by replacing the water molecules present in aluminophosphate and silicoaluminophosphate AFI-type molecular sieves (AlPO-5 and SAPO-5) with azole molecules (imidazole or 1,2,4-triazole). Both the introduction of azoles and the generation of Brønsted acid centers by isomorphous substitution in aluminophosphate materials were aimed at improving the proton conductivity of the materials and its stability. In the presented study, AlPO-5 and several SAPO-5 materials differing in silicon content were synthesized. The obtained porous matrices were studied using PXRD, low-temperature nitrogen sorption, TPD-NH(3), FTIR, and SEM. The proton conductivity of composites was measured using impedance spectroscopy. The results show that the increase in silicon content of the porous matrices is accompanied by an increase in their acidity. However, this does not translate into an increase in the conductivity of the azole composites. Triazole composites show lower conductivity and significantly higher activation energies than imidazole composites; however, most triazole composites show much higher stability. The different conductivity values for imidazole and triazole composites may be due to differences in chemical properties of the azoles.