Cargando…
AI-Assisted Cotton Grading: Active and Semi-Supervised Learning to Reduce the Image-Labelling Burden
The assessment of food and industrial crops during harvesting is important to determine the quality and downstream processing requirements, which in turn affect their market value. While machine learning models have been developed for this purpose, their deployment is hindered by the high cost of la...
Autores principales: | Fisher, Oliver J., Rady, Ahmed, El-Banna, Aly A. A., Emaish, Haitham H., Watson, Nicholas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647751/ https://www.ncbi.nlm.nih.gov/pubmed/37960371 http://dx.doi.org/10.3390/s23218671 |
Ejemplares similares
-
Exploring Semi-Supervised Methods for Labeling Support in Multimodal Datasets
por: Diete, Alexander, et al.
Publicado: (2018) -
A semi-supervised learning framework for quantitative structure–activity regression modelling
por: Watson, Oliver, et al.
Publicado: (2020) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018) -
Semi-supervised multi-label collective classification ensemble for functional genomics
por: Wu, Qingyao, et al.
Publicado: (2014) -
Semi-Supervised Domain Adaptation for Holistic Counting under Label Gap
por: Litrico, Mattia, et al.
Publicado: (2021)