Cargando…
Validation of Machine Learning Models for Craniofacial Growth Prediction
This study identified the most accurate model for predicting longitudinal craniofacial growth in a Japanese population using statistical methods and machine learning. Longitudinal lateral cephalometric radiographs were collected from 59 children (27 boys and 32 girls) with no history of orthodontic...
Autores principales: | Kim, Eungyeong, Kuroda, Yasuhiro, Soeda, Yoshiki, Koizumi, So, Yamaguchi, Tetsutaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647775/ https://www.ncbi.nlm.nih.gov/pubmed/37958265 http://dx.doi.org/10.3390/diagnostics13213369 |
Ejemplares similares
-
Using Machine-Learning to Predict Sleep-Disordered Breathing Diagnosis From Medical Comorbidities and Craniofacial Features
por: Cokim, Stephen, et al.
Publicado: (2023) -
The Aponeurotic Tension Model of Craniofacial Growth in Man
por: Standerwick, Richard G, et al.
Publicado: (2009) -
Machine learning in dental, oral and craniofacial imaging: a review of recent progress
por: Ren, Ruiyang, et al.
Publicado: (2021) -
Contribution of FGFR1 Variants to Craniofacial Variations in East Asians
por: Adel, Mohamed, et al.
Publicado: (2017) -
Effects of 4-Hexylresorcinol on Craniofacial Growth in Rats
por: Lee, In-Song, et al.
Publicado: (2021)