Cargando…

Attention-Aware Patch-Based CNN for Blind 360-Degree Image Quality Assessment

An attention-aware patch-based deep-learning model for a blind 360-degree image quality assessment (360-IQA) is introduced in this paper. It employs spatial attention mechanisms to focus on spatially significant features, in addition to short skip connections to align them. A long skip connection is...

Descripción completa

Detalles Bibliográficos
Autores principales: Sendjasni, Abderrezzaq, Larabi, Mohamed-Chaker
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647793/
https://www.ncbi.nlm.nih.gov/pubmed/37960376
http://dx.doi.org/10.3390/s23218676
Descripción
Sumario:An attention-aware patch-based deep-learning model for a blind 360-degree image quality assessment (360-IQA) is introduced in this paper. It employs spatial attention mechanisms to focus on spatially significant features, in addition to short skip connections to align them. A long skip connection is adopted to allow features from the earliest layers to be used at the final level. Patches are properly sampled on the sphere to correspond to the viewports displayed to the user using head-mounted displays. The sampling incorporates the relevance of patches by considering (i) the exploration behavior and (ii) a latitude-based selection. An adaptive strategy is applied to improve the pooling of local patch qualities to global image quality. This includes an outlier score rejection step relying on the standard deviation of the obtained scores to consider the agreement, as well as a saliency to weigh them based on their visual significance. Experiments on available 360-IQA databases show that our model outperforms the state of the art in terms of accuracy and generalization ability. This is valid for general deep-learning-based models, multichannel models, and natural scene statistic-based models. Furthermore, when compared to multichannel models, the computational complexity is significantly reduced. Finally, an extensive ablation study gives insights into the efficacy of each component of the proposed model.