Cargando…
Attention-Aware Patch-Based CNN for Blind 360-Degree Image Quality Assessment
An attention-aware patch-based deep-learning model for a blind 360-degree image quality assessment (360-IQA) is introduced in this paper. It employs spatial attention mechanisms to focus on spatially significant features, in addition to short skip connections to align them. A long skip connection is...
Autores principales: | Sendjasni, Abderrezzaq, Larabi, Mohamed-Chaker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647793/ https://www.ncbi.nlm.nih.gov/pubmed/37960376 http://dx.doi.org/10.3390/s23218676 |
Ejemplares similares
-
PW-360IQA: Perceptually-Weighted Multichannel CNN for Blind 360-Degree Image Quality Assessment
por: Sendjasni, Abderrezzaq, et al.
Publicado: (2023) -
Spatiotemporal Characteristics of 360-Degree Basic Attention
por: Harada, Yuki, et al.
Publicado: (2019) -
The effect of task-irrelevant spatial contexts on 360-degree attention
por: Harada, Yuki, et al.
Publicado: (2020) -
Prediction of Head Movement in 360-Degree Videos Using Attention Model
por: Lee, Dongwon, et al.
Publicado: (2021) -
Comprehensive Assessment of Fine-Grained Wound Images Using a Patch-Based CNN With Context-Preserving Attention
Publicado: (2021)