Cargando…
Preclinical validation of a novel deep learning‐based metal artifact correction algorithm for orthopedic CT imaging
PURPOSE: To validate a novel deep learning‐based metal artifact correction (MAC) algorithm for CT, namely, AI‐MAC, in preclinical setting with comparison to conventional MAC and virtual monochromatic imaging (VMI) technique. MATERIALS AND METHODS: An experimental phantom was designed by consecutivel...
Autores principales: | Guo, Rui, Zou, Yixuan, Zhang, Shuai, An, Jiajia, Zhang, Guozhi, Du, Xiangdong, Gong, Huan, Xiong, Sining, Long, Yangfei, Ma, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647951/ https://www.ncbi.nlm.nih.gov/pubmed/37787513 http://dx.doi.org/10.1002/acm2.14166 |
Ejemplares similares
-
Value and Clinical Application of Orthopedic Metal Artifact Reduction Algorithm in CT Scans after Orthopedic Metal Implantation
por: Hu, Yi, et al.
Publicado: (2017) -
Deep learning‐based motion correction algorithm for coronary CT angiography: Lowering the phase requirement for morphological and functional evaluation
por: Yao, Xiaoling, et al.
Publicado: (2023) -
Comparison of Metal Artifact Reduction Algorithms in Patients with Hip Prostheses: Virtual Monoenergetic Images vs. Orthopedic Metal Artifact Reduction
Publicado: (2022) -
Evaluation of projection‐ and dual‐energy‐based methods for metal artifact reduction in CT using a phantom study
por: Long, Zaiyang, et al.
Publicado: (2018) -
An energy minimization method for the correction of cupping artifacts in cone‐beam CT
por: Xie, Shipeng, et al.
Publicado: (2016)