Cargando…
A research on the improved rotational robustness for thoracic organ delineation by using joint learning of segmenting spatially‐correlated organs: A U‐net based comparison
PURPOSE: To study the improved rotational robustness by using joint learning of spatially‐correlated organ segmentation (SCOS) for thoracic organ delineation. The network structure is not our point. METHODS: The SCOS was implemented in a U‐net‐like model (abbr. SCOS‐net) and evaluated on unseen rota...
Autores principales: | Zhang, Jie, Yang, Yiwei, Fang, Min, Xu, Yujin, Ji, Yongling, Chen, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647980/ https://www.ncbi.nlm.nih.gov/pubmed/37469242 http://dx.doi.org/10.1002/acm2.14096 |
Ejemplares similares
-
Self‐configuring nnU‐Net for automatic delineation of the organs at risk and target in high‐dose rate cervical brachytherapy, a low/middle‐income country's experience
por: Duprez, Didier, et al.
Publicado: (2023) -
DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI
por: Zhang, Jian, et al.
Publicado: (2023) -
Evaluation of deep learning‐based auto‐segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients
por: Wang, Zhi, et al.
Publicado: (2020) -
Clinical target volume and organs at risk segmentation for rectal cancer radiotherapy using the Flex U-Net network
por: Sha, Xue, et al.
Publicado: (2023) -
Deep learning‐based classification of organs at risk and delineation guideline in pelvic cancer radiation therapy
por: Lempart, Michael, et al.
Publicado: (2023)