Cargando…
Feasibility evaluation of novel AI‐based deep‐learning contouring algorithm for radiotherapy
PURPOSE: To evaluate the clinical feasibility of the Siemens Healthineers AI‐Rad Companion Organs RT VA30A (Organs‐RT) auto‐contouring algorithm for organs at risk (OARs) of the pelvis, thorax, and head and neck (H&N). METHODS: Computed tomography (CT) datasets from 30 patients (10 pelvis, 10 th...
Autores principales: | Maduro Bustos, Luis A., Sarkar, Abhirup, Doyle, Laura A., Andreou, Kelly, Noonan, Jodie, Nurbagandova, Diana, Shah, SunJay A., Irabor, Omoruyi Credit, Mourtada, Firas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647981/ https://www.ncbi.nlm.nih.gov/pubmed/37464581 http://dx.doi.org/10.1002/acm2.14090 |
Ejemplares similares
-
Leveraging the Global Health Service Partnership Model for Workforce
Development in Global Radiation Oncology
por: Irabor, Omoruyi Credit, et al.
Publicado: (2017) -
Can the Adoption of Hypofractionation Guidelines Expand Global Radiotherapy Access? An Analysis for Breast and Prostate Radiotherapy
por: Irabor, Omoruyi Credit, et al.
Publicado: (2020) -
The use of LiF (TLD‐100) as an out‐of‐field dosimeter
por: Kry, Stephen F., et al.
Publicado: (2007) -
Clinical assessment of a novel machine‐learning automated contouring tool for radiotherapy planning
por: Hu, Yunfei, et al.
Publicado: (2023) -
The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy
por: Zhang, Lian, et al.
Publicado: (2018)