Cargando…
Development of machine learning model to predict pulmonary function with low‐dose CT‐derived parameter response mapping in a community‐based chest screening cohort
PURPOSE: To construct and evaluate the performance of a machine learning‐based low dose computed tomography (LDCT)‐derived parametric response mapping (PRM) model for predicting pulmonary function test (PFT) results. MATERIALS AND METHODS: A total of 615 subjects from a community‐based screening pop...
Autores principales: | Zhou, Xiuxiu, Pu, Yu, Zhang, Di, Guan, Yu, Lu, Yang, Zhang, Weidong, Fu, Chi‐Cheng, Fang, Qu, Zhang, Hanxiao, Liu, Shiyuan, Fan, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647993/ https://www.ncbi.nlm.nih.gov/pubmed/37782241 http://dx.doi.org/10.1002/acm2.14171 |
Ejemplares similares
-
Re-Defining High Risk COPD with Parameter Response Mapping Based on Machine Learning Models
por: Pu, Yu, et al.
Publicado: (2022) -
Image quality improvement in low‐dose chest CT with deep learning image reconstruction
por: Tian, Qian, et al.
Publicado: (2022) -
Evaluation of deep‐learning image reconstruction for chest CT examinations at two different dose levels
por: Svalkvist, Angelica, et al.
Publicado: (2022) -
Ultra-low-dose spectral-detector computed tomography for the accurate quantification of pulmonary nodules: an anthropomorphic chest phantom study
por: Zhou, Xiuxiu, et al.
Publicado: (2023) -
Chest radiographs and machine learning – Past, present and future
por: Jones, Catherine M, et al.
Publicado: (2021)