Cargando…
Low-Cost Optimized U-Net Model with GMM Automatic Labeling Used in Forest Semantic Segmentation
Currently, Convolutional Neural Networks (CNN) are widely used for processing and analyzing image or video data, and an essential part of state-of-the-art studies rely on training different CNN architectures. They have broad applications, such as image classification, semantic segmentation, or face...
Autores principales: | Andrei, Alexandru-Toma, Grigore, Ovidiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648017/ https://www.ncbi.nlm.nih.gov/pubmed/37960690 http://dx.doi.org/10.3390/s23218991 |
Ejemplares similares
-
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Multi-U-Net: Residual Module under Multisensory Field and Attention Mechanism Based Optimized U-Net for VHR Image Semantic Segmentation
por: Ran, Si, et al.
Publicado: (2021) -
An Improved Boundary-Aware U-Net for Ore Image Semantic Segmentation
por: Wang, Wei, et al.
Publicado: (2021) -
Face-voice based multimodal biometric authentication system via FaceNet and GMM
por: Alharbi, Bayan, et al.
Publicado: (2023) -
Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm
por: Khouy, Mohammed, et al.
Publicado: (2023)