Cargando…

Insights into human eNOS, nNOS and iNOS structures and medicinal indications from statistical analyses of their interactions with bound compounds

[Image: see text] 83 Structures of human nNOS, 55 structures of human eNOS, 13 structures of iNOS, and about 126 reported NOS-bound compounds are summarized and analyzed. Structural and statistical analysis show that, at least one copy of each analyzed compound binds to the active site (the substrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Jianshu, Li, Dié, Kang, Lei, Luo, Chenbing, Wang, Jiangyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biophysics Reports Editorial Office 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648232/
https://www.ncbi.nlm.nih.gov/pubmed/38028152
http://dx.doi.org/10.52601/bpr.2023.210045
Descripción
Sumario:[Image: see text] 83 Structures of human nNOS, 55 structures of human eNOS, 13 structures of iNOS, and about 126 reported NOS-bound compounds are summarized and analyzed. Structural and statistical analysis show that, at least one copy of each analyzed compound binds to the active site (the substrate arginine binding site) of human NOS. And binding features of the three isoforms show differences, but the binding preference of compounds is not in the way helpful for inhibitor design targeting nNOS and iNOS, or for activator design targeting eNOS. This research shows that there is a strong structural and functional similarity between oxygenase domains of human NOS isoforms, especially the architecture, residue composition, size, shape, and distribution profile of hydrophobicity, polarity and charge of the active site. The selectivity and efficacy of inhibitors over the rest of isoforms rely a lot on chance and randomness. Further increase of selectivity via rational improvement is uncertain, unpredictable and unreliable, therefore, to achieve high selectivity through targeting this site is complicated and requires combinative investigation. After analysis on the current two targeting sites in NOS, the highly conserved arginine binding pocket and H4B binding pocket, new potential drug-targeting sites are proposed based on structure and sequence profiling. This comprehensive analysis on the structure and interaction profiles of human NOS and bound compounds provides fresh insights for drug discovery and pharmacological research, and the new discovery here is practically applied to guide protein-structure based drug discovery.