Cargando…
Camera-Based Indoor Positioning System for the Creation of Digital Shadows of Plant Layouts
In the past, plant layouts were regarded as highly static structures. With increasing internal and external factors causing turbulence in operations, it has become more necessary for companies to adapt to new conditions in order to maintain optimal performance. One possible way for such an adaptatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648300/ https://www.ncbi.nlm.nih.gov/pubmed/37960545 http://dx.doi.org/10.3390/s23218845 |
Sumario: | In the past, plant layouts were regarded as highly static structures. With increasing internal and external factors causing turbulence in operations, it has become more necessary for companies to adapt to new conditions in order to maintain optimal performance. One possible way for such an adaptation is the adjustment of the plant layout by rearranging the individual facilities within the plant. Since the information about the plant layout is considered as master data and changes have a considerable impact on interconnected processes in production, it is essential that this data remains accurate and up-to-date. This paper presents a novel approach to create a digital shadow of the plant layout, which allows the actual state of the physical layout to be continuously represented in virtual space. To capture the spatial positions and orientations of the individual facilities, a pan-tilt-zoom camera in combination with fiducial markers is used. With the help of a prototypically implemented system, the real plant layout was captured and converted into different data formats for further use in exemplary external software systems. This enabled the automatic updating of the plant layout for simulation, analysis and routing tasks in a case study and showed the benefits of using the proposed system for layout capturing in terms of accuracy and effort reduction. |
---|