Cargando…
Mamdani vs. Takagi–Sugeno Fuzzy Inference Systems in the Calibration of Continuous-Time Car-Following Models
The transition to intelligent transportation systems (ITSs) is necessary to improve traffic flow in urban areas and reduce traffic congestion. Traffic modeling simplifies the understanding of the traffic paradigm and helps researchers to estimate traffic behavior and identify appropriate solutions f...
Autores principales: | Pop, Mădălin-Dorin, Pescaru, Dan, Micea, Mihai V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648324/ https://www.ncbi.nlm.nih.gov/pubmed/37960491 http://dx.doi.org/10.3390/s23218791 |
Ejemplares similares
-
Hybrid Solution Combining Kalman Filtering with Takagi–Sugeno Fuzzy Inference System for Online Car-Following Model Calibration
por: Pop, Mădălin-Dorin, et al.
Publicado: (2020) -
Advanced Takagi‒Sugeno fuzzy systems: delay and saturation
por: Benzaouia, Abdellah, et al.
Publicado: (2014) -
Proposal of Takagi–Sugeno Fuzzy-PI Controller Hardware
por: Silva, Sérgio N., et al.
Publicado: (2020) -
Multiple models approach in automation: Takagi-Sugeno fuzzy systems
por: Chadli, Mohammed, et al.
Publicado: (2013) -
Preliminary Study for AUV: Longitudinal Stabilization Method Based on Takagi-Sugeno Fuzzy Inference System †
por: Petritoli, Enrico, et al.
Publicado: (2021)