Cargando…

Geant4 Simulation of Photon- and Neutron-Shielding Capabilities of Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate)

Simulation is used by scientists to imitate a real-life experimental setup in order to save time, costs and effort. Geant4, a toolkit based on the Monte Carlo method, has been widely used in investigating the radiation-shielding properties of different materials. In many recent studies, researchers...

Descripción completa

Detalles Bibliográficos
Autores principales: Akhdar, Hanan, Alshehri, Maryam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648397/
https://www.ncbi.nlm.nih.gov/pubmed/37959937
http://dx.doi.org/10.3390/polym15214257
Descripción
Sumario:Simulation is used by scientists to imitate a real-life experimental setup in order to save time, costs and effort. Geant4, a toolkit based on the Monte Carlo method, has been widely used in investigating the radiation-shielding properties of different materials. In many recent studies, researchers have focused on polymers and their shielding capabilities. Poly(lactic acid) (PLA) is a widely used biopolymer in many applications due to its excellent mechanical properties. However, it has limitations related to its degree of crystallinity and molecular characteristics, which could be improved through blending with other biodegradable polymers such as poly(hydroxybutyrate) (PHB). Previous published studies have shown that the mechanical properties of such blends can be improved further. In this work, the effect of blending PHB with PLA on the photon- and neutron-shielding capabilities will be investigated using Geant4 over a wide energy range, as well as the effect of doping those blends with metal oxides. The results show that the shielding properties of the polymers are affected by blending with other polymers and by doping the polymer blends with different metal oxides, and they confirm that Geant4 is a very reliable tool that can simulate any material’s shielding properties against photons and neutrons.