Cargando…
Prediction of Xe/Kr Separation in Metal-Organic Frameworks by a Precursor-Based Neural Network Synergistic with a Polarizable Adsorbate Model
Adsorption and separation of Xe/Kr are significant for making high-density nuclear energy environmentally friendly and for meeting the requirements of the gas industry. Enhancing the accuracy of the adsorbate model for describing the adsorption behaviors of Xe and Kr in MOFs and the efficiency of th...
Autores principales: | Liu, Zewei, Xia, Qibin, Huang, Bichun, Yi, Hao, Yan, Jian, Chen, Xin, Xu, Feng, Xi, Hongxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648455/ https://www.ncbi.nlm.nih.gov/pubmed/37959783 http://dx.doi.org/10.3390/molecules28217367 |
Ejemplares similares
-
Efficient Xe selective separation from Xe/Kr/N(2) mixtures over a microporous CALF-20 framework
por: Wei, Yi, et al.
Publicado: (2022) -
Selective separation of Xe/Kr and adsorption of water in a microporous hydrogen-bonded organic framework
por: Lee, Wang-Geun, et al.
Publicado: (2019) -
XGBoost: An Optimal Machine Learning Model with Just
Structural Features to Discover MOF Adsorbents of Xe/Kr
por: Liang, Heng, et al.
Publicado: (2021) -
Muonium in the condensed phases of Ar, Kr and Xe
por: Kiefl, R F, et al.
Publicado: (1980) -
The emission spectra of Ar, Kr or Xe + TEA
por: Suzuki, M, et al.
Publicado: (1985)