Cargando…

Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil

Osmotic stress is a serious physiological disorder that affects water movement within the cell membranes. Osmotic stress adversely affects agricultural production and sustainability and is largely caused by soil salinity and water stress. An integrated nitrogen-fixing bacteria (NFB) soil amendment a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahgat, Abdel-Raouf, Dahab, Abeer A., Elhakem, Abeer, Gururani, Mayank Anand, El-Serafy, Rasha S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648473/
https://www.ncbi.nlm.nih.gov/pubmed/37960041
http://dx.doi.org/10.3390/plants12213684
_version_ 1785135349072134144
author Bahgat, Abdel-Raouf
Dahab, Abeer A.
Elhakem, Abeer
Gururani, Mayank Anand
El-Serafy, Rasha S.
author_facet Bahgat, Abdel-Raouf
Dahab, Abeer A.
Elhakem, Abeer
Gururani, Mayank Anand
El-Serafy, Rasha S.
author_sort Bahgat, Abdel-Raouf
collection PubMed
description Osmotic stress is a serious physiological disorder that affects water movement within the cell membranes. Osmotic stress adversely affects agricultural production and sustainability and is largely caused by soil salinity and water stress. An integrated nitrogen-fixing bacteria (NFB) soil amendment and an exogenous foliar application of Aloe vera leaf extract (ALE), and moringa leaf extract (MLE) were evaluated on roselle (Hibiscus sabdariffa L.) growth, calyx yield, secondary metabolites, and tolerance to osmotic stress in salt-affected soil. The osmotic stress markedly decreased above- and below-ground development of the roselle plant, but integrated NFB soil amendment with ALE or MLE foliar application significantly alleviated its negative impacts. Broadly, an improvement was observed in chlorophyll, carbohydrates, and protein levels following NFB and extracts foliar application, as well as a significant enhancement in antioxidant production (total phenols, ascorbic acid, and FRAP), which decreased peroxide production and increased stress tolerance in plants. Under osmotic stress, the roselle calyx revealed the highest anthocyanin levels, which declined following NFB soil amendment and foliar extract application. Additionally, an enhancement in nitrogen (N), phosphorus (P), and potassium (K) contents and the K/Na ratio, along with a depression in sodium (Na) content, was noticed. The integrated application of Azospirillum lipoferum × ALE exhibited the best results in terms of enhancing above- and below-ground growth, calyx yield, secondary metabolites, and tolerance to osmotic stress of the roselle plants cultivated in the salt-affected soil.
format Online
Article
Text
id pubmed-10648473
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106484732023-10-25 Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil Bahgat, Abdel-Raouf Dahab, Abeer A. Elhakem, Abeer Gururani, Mayank Anand El-Serafy, Rasha S. Plants (Basel) Article Osmotic stress is a serious physiological disorder that affects water movement within the cell membranes. Osmotic stress adversely affects agricultural production and sustainability and is largely caused by soil salinity and water stress. An integrated nitrogen-fixing bacteria (NFB) soil amendment and an exogenous foliar application of Aloe vera leaf extract (ALE), and moringa leaf extract (MLE) were evaluated on roselle (Hibiscus sabdariffa L.) growth, calyx yield, secondary metabolites, and tolerance to osmotic stress in salt-affected soil. The osmotic stress markedly decreased above- and below-ground development of the roselle plant, but integrated NFB soil amendment with ALE or MLE foliar application significantly alleviated its negative impacts. Broadly, an improvement was observed in chlorophyll, carbohydrates, and protein levels following NFB and extracts foliar application, as well as a significant enhancement in antioxidant production (total phenols, ascorbic acid, and FRAP), which decreased peroxide production and increased stress tolerance in plants. Under osmotic stress, the roselle calyx revealed the highest anthocyanin levels, which declined following NFB soil amendment and foliar extract application. Additionally, an enhancement in nitrogen (N), phosphorus (P), and potassium (K) contents and the K/Na ratio, along with a depression in sodium (Na) content, was noticed. The integrated application of Azospirillum lipoferum × ALE exhibited the best results in terms of enhancing above- and below-ground growth, calyx yield, secondary metabolites, and tolerance to osmotic stress of the roselle plants cultivated in the salt-affected soil. MDPI 2023-10-25 /pmc/articles/PMC10648473/ /pubmed/37960041 http://dx.doi.org/10.3390/plants12213684 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bahgat, Abdel-Raouf
Dahab, Abeer A.
Elhakem, Abeer
Gururani, Mayank Anand
El-Serafy, Rasha S.
Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil
title Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil
title_full Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil
title_fullStr Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil
title_full_unstemmed Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil
title_short Integrated Action of Rhizobacteria with Aloe vera and Moringa Leaf Extracts Improves Defense Mechanisms in Hibiscus sabdariffa L. Cultivated in Saline Soil
title_sort integrated action of rhizobacteria with aloe vera and moringa leaf extracts improves defense mechanisms in hibiscus sabdariffa l. cultivated in saline soil
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648473/
https://www.ncbi.nlm.nih.gov/pubmed/37960041
http://dx.doi.org/10.3390/plants12213684
work_keys_str_mv AT bahgatabdelraouf integratedactionofrhizobacteriawithaloeveraandmoringaleafextractsimprovesdefensemechanismsinhibiscussabdariffalcultivatedinsalinesoil
AT dahababeera integratedactionofrhizobacteriawithaloeveraandmoringaleafextractsimprovesdefensemechanismsinhibiscussabdariffalcultivatedinsalinesoil
AT elhakemabeer integratedactionofrhizobacteriawithaloeveraandmoringaleafextractsimprovesdefensemechanismsinhibiscussabdariffalcultivatedinsalinesoil
AT gururanimayankanand integratedactionofrhizobacteriawithaloeveraandmoringaleafextractsimprovesdefensemechanismsinhibiscussabdariffalcultivatedinsalinesoil
AT elserafyrashas integratedactionofrhizobacteriawithaloeveraandmoringaleafextractsimprovesdefensemechanismsinhibiscussabdariffalcultivatedinsalinesoil