Cargando…
Shear Strength of Repaired 3D-Printed and Milled Provisional Materials Using Different Resin Materials with and without Chemical and Mechanical Surface Treatment
The aim of this study was to assess the shear bond strength of 3D-printed and milled provisional restorations using various resin materials and surface finishes. There were 160 preliminary samples in all, and they were split into two groups: the milled group and the 3D-printed group. Based on the re...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648486/ https://www.ncbi.nlm.nih.gov/pubmed/37959963 http://dx.doi.org/10.3390/polym15214284 |
Sumario: | The aim of this study was to assess the shear bond strength of 3D-printed and milled provisional restorations using various resin materials and surface finishes. There were 160 preliminary samples in all, and they were split into two groups: the milled group and the 3D-printed group. Based on the resin used for repair (composite or polymethylmethacrylate (PMMA)) and the type of surface treatment utilized (chemical or mechanical), each group was further divided into subgroups. The specimens were subjected to thermocycling from 5 °C to 55 °C for up to 5000 thermal cycles with a dwell time of 30 s. The mechanical qualities of the repaired material underwent testing for shear bond strength (SBS). To identify the significant differences between the groups and subgroups, a statistical analysis was carried out. Three-way ANOVA was used to analyze the effects of each independent component (the material and the bonding condition), as well as the interaction between the independent factors on shear bond strength. Tukey multiple post-hoc tests were used to compare the mean results for each material under various bonding circumstances. The shear bond strengths of the various groups and subgroups differed significantly (p < 0.05). When compared to the milled group, the 3D-printed group had a much greater mean shear bond strength. When compared to PMMA repair, the composite resin material showed a noticeably greater shear bond strength. In terms of surface treatments, the samples with mechanical and chemical surface treatments had stronger shear bonds than those that had not received any. The results of this study demonstrate the effect of the fabrication method, resin type, and surface treatment on the shear bond strength of restored provisional restorations. Particularly when made using composite material and given surface treatments, 3D-printed provisional restorations showed exceptional mechanical qualities. These results can help dentists choose the best fabrication methods, resin materials, and surface treatments through which to increase the durability and bond strength of temporary prosthesis. |
---|