Cargando…
Acoustic-Sensing-Based Attribute-Driven Imbalanced Compensation for Anomalous Sound Detection without Machine Identity
Acoustic sensing provides crucial data for anomalous sound detection (ASD) in condition monitoring. However, building a robust acoustic-sensing-based ASD system is challenging due to the unsupervised nature of training data, which only contain normal sound samples. Recent discriminative models based...
Autores principales: | Zhou, Yifan, Long, Yanhua, Wei, Haoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648519/ https://www.ncbi.nlm.nih.gov/pubmed/37960683 http://dx.doi.org/10.3390/s23218984 |
Ejemplares similares
-
Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds
por: Stilp, Christian E., et al.
Publicado: (2012) -
Data-Driven Estimation of a Driving Safety Tolerance Zone Using Imbalanced Machine Learning
por: Garefalakis, Thodoris, et al.
Publicado: (2022) -
Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes
por: Lewis, James W., et al.
Publicado: (2012) -
Consequences of anomalous Ward identities
por: Wess, J, et al.
Publicado: (1971) -
Machine Learning Model for Imbalanced Cholera Dataset in Tanzania
por: Leo, Judith, et al.
Publicado: (2019)