Cargando…

Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)

The aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Takenoya, Fumiko, Shibato, Junko, Yamashita, Michio, Kimura, Ai, Hirako, Satoshi, Chiba, Yoshihiko, Nonaka, Naoko, Shioda, Seiji, Rakwal, Randeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648535/
https://www.ncbi.nlm.nih.gov/pubmed/37958806
http://dx.doi.org/10.3390/ijms242115825
_version_ 1785135361658191872
author Takenoya, Fumiko
Shibato, Junko
Yamashita, Michio
Kimura, Ai
Hirako, Satoshi
Chiba, Yoshihiko
Nonaka, Naoko
Shioda, Seiji
Rakwal, Randeep
author_facet Takenoya, Fumiko
Shibato, Junko
Yamashita, Michio
Kimura, Ai
Hirako, Satoshi
Chiba, Yoshihiko
Nonaka, Naoko
Shioda, Seiji
Rakwal, Randeep
author_sort Takenoya, Fumiko
collection PubMed
description The aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system, we confirmed that, compared with a control (saline), intranasally administered GALP prevented further body weight gain in diet-induced obesity (DIO) mice with continued access to an HFD. Using an omics-based approach, we identified several genes and metabolites in the liver tissue of DIO mice that were altered by the administration of intranasal GALP. We used whole-genome DNA microarray and metabolomics analyses to determine the anti-obesity effects of intranasal GALP in DIO mice fed an HFD. Transcriptomic profiling revealed the upregulation of flavin-containing dimethylaniline monooxygenase 3 (Fmo3), metallothionein 1 and 2 (Mt1 and Mt2, respectively), and the Aldh1a3, Defa3, and Defa20 genes. Analysis using the DAVID tool showed that intranasal GALP enhanced gene expression related to fatty acid elongation and unsaturated fatty acid synthesis and downregulated gene expression related to lipid and cholesterol synthesis, fat absorption, bile uptake, and excretion. Metabolite analysis revealed increased levels of coenzyme Q10 and oleoylethanolamide in the liver tissue, increased levels of deoxycholic acid (DCA) and taurocholic acid (TCA) in the bile acids, increased levels of taurochenodeoxycholic acid (TCDCA), and decreased levels of ursodeoxycholic acid (UDCA). In conclusion, intranasal GALP administration alleviated weight gain in obese mice fed an HFD via mechanisms involving antioxidant, anti-inflammatory, and fatty acid metabolism effects and genetic alterations. The gene expression data are publicly available at NCBI GSE243376.
format Online
Article
Text
id pubmed-10648535
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106485352023-10-31 Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide) Takenoya, Fumiko Shibato, Junko Yamashita, Michio Kimura, Ai Hirako, Satoshi Chiba, Yoshihiko Nonaka, Naoko Shioda, Seiji Rakwal, Randeep Int J Mol Sci Article The aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system, we confirmed that, compared with a control (saline), intranasally administered GALP prevented further body weight gain in diet-induced obesity (DIO) mice with continued access to an HFD. Using an omics-based approach, we identified several genes and metabolites in the liver tissue of DIO mice that were altered by the administration of intranasal GALP. We used whole-genome DNA microarray and metabolomics analyses to determine the anti-obesity effects of intranasal GALP in DIO mice fed an HFD. Transcriptomic profiling revealed the upregulation of flavin-containing dimethylaniline monooxygenase 3 (Fmo3), metallothionein 1 and 2 (Mt1 and Mt2, respectively), and the Aldh1a3, Defa3, and Defa20 genes. Analysis using the DAVID tool showed that intranasal GALP enhanced gene expression related to fatty acid elongation and unsaturated fatty acid synthesis and downregulated gene expression related to lipid and cholesterol synthesis, fat absorption, bile uptake, and excretion. Metabolite analysis revealed increased levels of coenzyme Q10 and oleoylethanolamide in the liver tissue, increased levels of deoxycholic acid (DCA) and taurocholic acid (TCA) in the bile acids, increased levels of taurochenodeoxycholic acid (TCDCA), and decreased levels of ursodeoxycholic acid (UDCA). In conclusion, intranasal GALP administration alleviated weight gain in obese mice fed an HFD via mechanisms involving antioxidant, anti-inflammatory, and fatty acid metabolism effects and genetic alterations. The gene expression data are publicly available at NCBI GSE243376. MDPI 2023-10-31 /pmc/articles/PMC10648535/ /pubmed/37958806 http://dx.doi.org/10.3390/ijms242115825 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Takenoya, Fumiko
Shibato, Junko
Yamashita, Michio
Kimura, Ai
Hirako, Satoshi
Chiba, Yoshihiko
Nonaka, Naoko
Shioda, Seiji
Rakwal, Randeep
Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)
title Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)
title_full Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)
title_fullStr Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)
title_full_unstemmed Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)
title_short Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)
title_sort transcriptomic (dna microarray) and metabolome (lc-tof-ms) analyses of the liver in high-fat diet mice after intranasal administration of galp (galanin-like peptide)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648535/
https://www.ncbi.nlm.nih.gov/pubmed/37958806
http://dx.doi.org/10.3390/ijms242115825
work_keys_str_mv AT takenoyafumiko transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT shibatojunko transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT yamashitamichio transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT kimuraai transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT hirakosatoshi transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT chibayoshihiko transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT nonakanaoko transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT shiodaseiji transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide
AT rakwalrandeep transcriptomicdnamicroarrayandmetabolomelctofmsanalysesoftheliverinhighfatdietmiceafterintranasaladministrationofgalpgalaninlikepeptide