Cargando…
Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance
This paper summarizes in depth the state of the art of aerial swarms, covering both classical and new reinforcement-learning-based approaches for their management. Then, it proposes a hybrid AI system, integrating deep reinforcement learning in a multi-agent centralized swarm architecture. The propo...
Autores principales: | Arranz, Raúl, Carramiñana, David, de Miguel, Gonzalo, Besada, Juan A., Bernardos, Ana M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648592/ https://www.ncbi.nlm.nih.gov/pubmed/37960466 http://dx.doi.org/10.3390/s23218766 |
Ejemplares similares
-
Modelling and Simulation of Collaborative Surveillance for Unmanned Traffic Management
por: Besada, Juan A., et al.
Publicado: (2022) -
Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users
por: Lee, Wonseok, et al.
Publicado: (2021) -
UAV-UGV-UMV Multi-Swarms for Cooperative Surveillance
por: Stolfi, Daniel H., et al.
Publicado: (2021) -
Sensors and Communication Simulation for Unmanned Traffic Management
por: Carramiñana, David, et al.
Publicado: (2021) -
Proactive Handover Decision for UAVs with Deep Reinforcement Learning
por: Jang, Younghoon, et al.
Publicado: (2022)