Cargando…
The Impact of Al(2)O(3) Particles from Grit-Blasted Ti6Al7Nb (Alloy) Implant Surfaces on Biocompatibility, Aseptic Loosening, and Infection
For the improvement of surface roughness, titanium joint arthroplasty (TJA) components are grit-blasted with Al(2)O(3) (corundum) particles during manufacturing. There is an acute concern, particularly with uncemented implants, about polymeric, metallic, and corundum debris generation and accumulati...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648623/ https://www.ncbi.nlm.nih.gov/pubmed/37959464 http://dx.doi.org/10.3390/ma16216867 |
Sumario: | For the improvement of surface roughness, titanium joint arthroplasty (TJA) components are grit-blasted with Al(2)O(3) (corundum) particles during manufacturing. There is an acute concern, particularly with uncemented implants, about polymeric, metallic, and corundum debris generation and accumulation in TJA, and its association with osteolysis and implant loosening. The surface morphology, chemistry, phase analysis, and surface chemistry of retrieved and new Al(2)O(3) grit-blasted titanium alloy were determined with scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and confocal laser fluorescence microscopy, respectively. Peri-prosthetic soft tissue was studied with histopathology. Blasted retrieved and new stems were exposed to human mesenchymal stromal stem cells (BMSCs) for 7 days to test biocompatibility and cytotoxicity. We found metallic particles in the peri-prosthetic soft tissue. Ti6Al7Nb with the residual Al(2)O(3) particles exhibited a low cytotoxic effect while polished titanium and ceramic disks exhibited no cytotoxic effect. None of the tested materials caused cell death or even a zone of inhibition. Our results indicate a possible biological effect of the blasting debris; however, we found no significant toxicity with these materials. Further studies on the optimal size and properties of the blasting particles are indicated for minimizing their adverse biological effects. |
---|